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ABSTRACT 
 
 This study estimates the local level model with heavy-tailed stable errors, by 
means of a particle filter.  The infinite-variance stable errors capture both sudden regime 
shifts and occasional large measurement errors.  Stable distributions are chosen because 
of their role in the Generalized Central Limit Theorem.  However, the method is readily 
adaptable to other heavy-tailed distributions.   
  
 The study introduces the use of “Whisker particles” to facilitate the early 
detection of regime shifts without an excessive number of particles.  In order to minimize 
randomness, the study also employs rank-stratified sampling in the initialization, 
resampling, and propagation steps.  Simulations show that the proposed method 
dominates the Basic particle filter of Gordon, Salmond and Smith (1993) and Kitagawa 
(1996), the Adaptive particle filter of Pitt and Shephard (1999), and the Mixture Kalman 
filter of Chen and Liu (2000) using the skew-stable Gaussian mixture approximation of 
Lemke, Riabiz and Godsill (2015), in terms of Mean Absolute Error for 10,000 or fewer 
particles.  It is also considerably faster than the Mixture Kalman filter. 
 
 The model is fit to stock returns, inflation, and Bitcoin returns, with characteristic 
exponent α estimates of 1.88, 1.77, and 1.71, respectively.  Normality is overwhelmingly 
rejected in each case.   The estimated signal/noise ratio is unexpectedly high in all cases.   
 
  



 
“Life is a gamble, at terrible odds; 

If it were a bet, you wouldn’t take it.” 
— Tom Stoppard, 

Rosenkrantz and Guildenstern are Dead 
 
 
1.  INTRODUCTION AND SUMMARY OF RESULTS 
 
 This study estimates a simple state-space model with heavy-tailed stable errors, 
by means of a particle filter.  The infinite-variance stable errors capture both the sudden 
regime shifts and occasional large measurement errors that are often present in economic 
and financial data.  The study introduces the use of “Whisker particles” in order to 
facilitate the early detection of regime shifts without an excessive number of particles or 
over-reaction to observation noise.  Stable distributions are chosen because of their role 
in the Generalized Central Limit Theorem.  However, the method is readily adaptable to 
other heavy-tailed distributions, such as Student’s t.   
  
 In order to minimize randomness, the study employs rank-stratified sampling in 
the initialization, resampling, and propagation steps.  The only random element is that the 
propagation step employs random permutations of a non-random stratified sample from 
the regime-shift distribution. 
 
 Simulations show that with 10,000 or fewer particles, the proposed Whisker filter 
dominates the Basic particle filter of Gordon, Salmond and Smith (1993) and Kitagawa 
(1996), as well as the Adaptive particle filter of Pitt and Shephard (1999), in terms of 
Mean Absolute Error.  With 100,000 particles, the three methods give similar results. 
 

The Mixture Kalman filter of Chen and Liu (2000), using the skew-stable normal 
mixture algorithm of Lemke, Riabiz and Godsill (2015), is found to be less accurate than 
the Whisker filter and to run considerably slower than the Whisker filter with an equal 
number of components.  A modification of the Mixture Kalman filter with unequal 
probability components governed by a Beta distribution is marginally more accurate, but 
still is dominated by the Whisker filter. 
 
 The model is fit to stock returns, inflation, and Bitcoin returns, with characteristic 
exponent α estimates of 1.88, 1.77, and 1.71, respectively.  Normality (α = 2) is 
overwhelmingly rejected and skewness is pronounced in each case.   The estimated 
signal/noise ratio is unexpectedly high in all cases, which warrants further research.   
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 The simple univariate state variable of the present paper is intended to be a 
prequel to a more flexible multivariate state variable model.  Future research will also 
implement a two-filter particle smoother.   
 
2.  THE LOCAL LEVEL MODEL 
 
 The “Local Level Model” (LLM) is the simplest state-space model.  In it, an 
unobserved univariate state variable xt follows a random walk for t = 1, ... T, while an 
observed sequence yt equals the state variable plus a white-noise measurement error: 
 𝑦! = 𝑥! + 𝜀!         (1)  
 𝑥! = 𝑥!"# + 𝜂!        (2)  
The transitory measurement errors 𝜀!, sometimes called the “noise,” are mutually 
independent with mean zero, density f(𝜀), and	cumulative distribution F(𝜀).  The 
permanent regime shifts 𝜂!, sometimes called the “signal,” are independent of one 
another as well as the measurement errors, with mean zero, density g(𝜂), and cumulative 
distribution G(𝜂). 
 
 The LLM, having a univariate state variable with trivial dynamics, is overly 
simplistic for most purposes, but serves as a first step to the treatment of more general 
Time Varying Parameter (TVP) models, e.g. multiple regression with drifting coefficients 
as in Recursive Least Squares as proposed by Sargent (1999), Evans and Honkapohja 
(2001), and McCulloch (2005).   
 
 The “filter” distribution p(𝑥!|𝐘!), where 𝐘! = (𝑦#, 𝑦$, ⋯ 𝑦!), gives the posterior 
distribution of xt, given the data observed to up to and including time t.  If the errors are 
all Gaussian, the well-known Kalman Filter provides a fast, closed-form solution to this 
filtering problem.  However, if either or both of the errors are non-Gaussian, numerical 
methods are required.   
 

In the general case of potentially non-Gaussian error distributions, the filtering 
problem may be solved by the iterative Bayesian procedure due independently to Alspach 
and Sorenson (1972) and Kitagawa (1987), and presented by Harvey (1990, pp. 162 ff). 1  
This involves the following series of Initialization (I), Propagation (P), and Updating (U) 
steps: 
 
 (I) Initialize filter for t = 1 using Bayes’ Rule with a uniform prior on 𝑥#: 
  p(𝑥#|𝑦#) = f(𝑦# − 𝑥#)       (3) 

 
1  The stable signal processing approach of Nolan (2008) provides a rolling-window stable Maximum  
Likelihood estimate of the signal, as if the signal were constant during the period of the window.  However, 
this approach does not rigorously take into account the time-variation of the signal.    
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 (P) Propagate to obtain the predictive prior for 𝑥!%# from the filter for 𝑥!, 
  p(𝑥!%#|𝐘!) = ∫ g(𝑥!%# − 𝑥!)p(𝑥!|𝐘!)d𝑥!    (4) 
 (U) Update to obtain the posterior filter for 𝑥!%#, again using Bayes’ Rule: 
  𝑝(𝑥!%#|𝐘!%#) 	∝ 	𝑝(𝑥!%#|𝐘𝒕)f(𝑦!%# − 𝑥!%#)    (5) 
 Iteration:  Replace t with t+1 and repeat P and U until t > T. 
 
   
3.  STABLE DISTRIBUTIONS 
 
 Economic shocks are often the cumulative outcome of the decisions of countless 
individuals over innumerable time sub-increments.  It is therefore often appropriate to use 
a Central Limit Theorem (CLT) to reduce the universe of potential choices for f(ε) and 
g(η). 
 
 According to the Classical (or 19th century) CLT, the sum of a large number of 
i.i.d. finite variance random variables converges in distribution, after adjusting location 
and scale, to a standard normal distribution.  Unfortunately, measurement errors and 
regime shifts are commonly too leptokurtic or heavy-tailed to be normal.   
 
 However, according to the Generalized (or 20th century) CLT, if the sum of a 
large number of i.i.d. random variables converges in distribution, after adjusting location 
and scale, to a limiting distribution, then the limiting distribution must be a member of 
the stable class (Zolotarev 1986, Samoridnitsky and Taqqu 1994).  The normal 
distribution is a member of this class, but it is the thinnest-tailed member, and the only 
one with a finite variance.  This CLT property led Mandelbrot (1963), Fama and Miller 
(1972), and others to propose the infinite-variance stable distributions as a more realistic 
alternative to the normal when returns are too leptokurtic for normality.  See McCulloch 
(1996a) for an overview of financial applications of stable distributions and Taleb (2010) 
for a popularized discussion. 
 
 A stable distribution S(α, β, c, μ) with density sα,β,c,μ(x) and cumulative 
distribution Sα,β,c,μ(x) is determined by four parameters:  The characteristic exponent α 
lies in the interval (0, 2], and determines the heaviness of the tails.  When α = 2, the 
distribution is normal with mean μ and variance 2σ2.  When α <  2, the variance of a 
stable random variable X is infinite and one or both tails have a Pareto-like or “Paretian” 
power shape: 
 P(|X| > x) = O(x-α).          (6) 
The skewness parameter β Î [−1, 1] determines the relative weight of the two tails: 

 𝛽 = lim
'→)

#"*(')"*("')
#"*(')%*("')

 .       (7) 
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The scale parameter c Î (0, ∞) is approximately the semi-interquartile range.  The 
location parameter μ is the mean provided α > 1 so that the mean exists.   
 
 The standard stable density sα,β,1,0(x) is determined by its Fourier transform or 
characteristic function, whose logarithm is:	 

 log cf-,/,#,0(𝑡) = log E	𝑒12! = C
−|𝑡|- D1 − 𝑖𝛽 tan 3-

$
H ,															𝛼 ≠ 1

−|𝑡| D1 + 𝑖𝛽 $
3
sgn(𝑡) log|𝑡|H , 𝛼 = 1

 

If X is distributed S(α, β, 1, 0), then Y = cX + μ is distributed S(α, β, c, μ) when c and μ 
are taken as scale and location parameters.2  Figure 1 plots the standard symmetric stable 
densities with β = 0 for α = 0.9, 1.0, ... 2.0.  Figure 2 plots standard skew-stable densities 
with α = 1.5 for β = −1.0, −0.8, ... 1.0.   
 
 

 
2  This is the Mean-Focus Cartesian parameterization, used by DuMouchel (1975), in which the location 
parameter µ is the mean for a > 1 and what the author has called the focus of stability for a < 1, and which 
is a location-scale family for all values of a and b.  It corresponds to that of Samorodnitsky and Taqqu 
(1994) and to the “S1” parameterization of Nolan (2009), except in the afocal cases a = 1, b ¹ 0, which do 
not concern us here.  See McCulloch (1996b) for details.  Other parameterizations include the Continuous 
Cartesian (Nolan “S0,” Matlab default), which is computationally convenient but in which the location 
parameter has no simple interpretation, and the Polar, which is often mathematically convenient.   
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Figure 1 

Symmetric Stable densities for α = 0.9, 1.0, ... 2.0, with β = 0, c = 1, and μ = 0. 
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Figure 2 
Skew-stable densities, with β = −1.0, −0.8, ... 1.0, α = 1.5, c = 1, and μ = 0. 
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 If X1 and X2 are independent stable random variables distributed S(α, β, ci, μi), i = 
1, 2, then their sum X3 = X1 + X2 is distributed S(α, β, c3, μ3), where  
 𝜇4 = 𝜇# + 𝜇$				(unless	α = 1	and	β ≠ 0),3 
and scale c3 determined by the following scale rule: 
 𝑐4- =	𝑐#- + 𝑐$-.        (8) 
If X1 and X2 have the same α but different β’s, X3 is distributed S(α, β3, c3, μ3), with c3 and 
μ3 as above, and skewness determined by the following skewness rule:  
 𝛽4 =	 (𝑐#-𝛽# + 𝑐$-𝛽$) 𝑐4-⁄ .       (9)  
 
 High-precision numerical approximations to the stable density, distribution, and 
inverse distribution are now available in John Nolan’s STABLE program (2009), as well 
as in the Matlab 2016+ Statistics Toolbox.4  The computations in this study for the most 
part use the Nolan “quick” routines that are very fast and adequately precise.  For 
technical reasons, these programs do not at present compute the stable functions for α 
within 0.01 (Nolan) or 0.02 (Matlab) of 1.0, unless β = 0 or α = 1.0.  However, it is not 
empirically restrictive in economics and finance to constrain α to be greater than 1.02. 
 
 We assume in this study that the measurement error distribution f(ε) and regime 
shift distribution g(η) are both stable with a common α ≥ 1.02 and means μ = 0, but with 
different scales cε and cη.  In order to accommodate the skewness that often appears in 
economic and financial data, we allow the measurement errors to be skewed, with 
parameter βε, but constrain the regime shifts to be symmetric, with βη = 0.5   
 
 Stable random variables are easily and precisely generated by means of the 
algorithm of Chambers, Mallows, and Stuck (1976), which is incorporated into the Nolan 
and Matlab packages.  Figure 3 depicts illustrative stable errors for T = 100, α = 1.7, βε = 
0.3, cε = 1.0, and cη = 0.25.  The regime shifts ηt are represented by blue diamonds, while 
the measurement errors 𝜀! are represented by red stars.  This realization happens to have 
a particularly dramatic (negative) regime shift at t = 53, as well as a particularly dramatic 
(negative) measurement error at t = 72. 6   Figure 4 shows the corresponding state variable 
xt (blue diamonds), and observations yt.(red stars).   

 
3  See McCulloch (1996b) concerning the “afocal” cases with α = 1 and β ≠ 0. 
 
4  Matlab uses the Continuous Cartesian (Nolan S0) parameterization, in which the location parameter 
differs from µ by a location shift equal to 𝛽𝑐	tan(𝜋𝛼/2) when β ¹ 0 and 𝛼 ≠ 1. 
 
5  In the multivariate sequel to this study discussed in section 15, it will be expedient to assume that the 
regime shifts have an elliptical joint stable distribution, and therefore will in any event be symmetrical.   
 
6  Although this illustration was randomly generated, it was selected from several such realizations for its 
particularly dramatic outliers.  Although βε = 0.3, the largest 𝜀! happens to be negative.  In a large sample, 
the probability that the largest draw and b will have opposite signs is (1-b)/2 = 0.35 in this case, so that this 
is not a rare occurrence. 
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Figure 3 
Illustrative stable errors with T = 100, α = 1.7, βε = 0.3, cε = 1.0, and cη = 0.25. Regime 
shifts ηt  are represented by blue diamonds, while measurement errors 𝜀! are represented 

by red stars. 
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Figure 4 
Illustrative state variable xt (blue diamonds), and observations yt.(red stars) corresponding 

to the errors in Figure 3. 
 
 
 
4.  PARTICLE FILTERING 
 
 When the state variable is one-dimensional, evaluating the propagation integral 
(4) with N-point numerical integration at each of N x-values and each of T points in time 
requires O(TN2) operations.  This is tedious but feasible (e.g. Oh 1994, Bidarkota and 
McCulloch 1998).  However, in the more interesting cases when the state variable is k-
dimensional, this integral would require Nk operations at each of Nk points, for a total of 
O(TN2k) operations, which quickly becomes intractable.   
 
 Particle Filtering instead approximates the requisite distributions with N mass 
points, and replaces the propagation integral with a simulation requiring only Nk 
operations, or Nk log(N) after the sorting that is required by the stratified resampling 
employed in the present paper, for a total of only O(TNk log(N)) operations.  The present 
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paper therefore implements particle filtering with a univariate state variable, as a first step 
toward an ultimately multivariate model.   
 
 In Particle Filtering, introduced independently by Gordon, Salmond and Smith 
(1993) and Kitagawa (1996), each of the required distributions is approximated by a step 
function determined by a set of N ordinates xi and corresponding probabilities pi 
summing to 1.  We will denote such a particle representation by <xi, pi> = {(xi, pi), i = 1, 
... N}.   
 
 Such a set of particles may be said to represent a continuous distribution H(x) if, 
after sorting the particles in increasing order by x and defining 𝑃1 = ∑ 𝑝51

56# , the step (S) 
function defined by  

  HW7(𝑥) = C
0, 𝑥 ∈ (−∞, 𝑥#]
	𝑃1 , 𝑥 ∈ (𝑥1 , 𝑥1%#]
1, 𝑥 ∈ (𝑥8 , ∞)		

     (10) 

approximates H(x).  It is common in the filtering literature to select the particles 
randomly, as follows: 
  𝑥1 = H"#(𝑢1), 𝑢1~U(0, 1);			𝑝1 = 1/𝑁. 
This random sampling implies  

  s. d. HW7(𝑥) = bH(𝑥)b1 − H(𝑥)c/𝑁c#/$ = Ob𝑁"#/$c 
 
 This approximation error can be greatly reduced by instead employing rank-
stratified sampling, as used already by Malik and Pitt (2011), as follows:   
  𝑥1 = H"# D1"0.;

8
H ;			𝑝1 = 1/𝑁 

This rank-stratified sampling implies 
  sup

'∈ℝ
eHW7(𝑥) − H(𝑥)e ≤ 1/𝑁 

Clearly rank-stratified sampling is more accurate than random sampling.  Note that in 
rank-stratified sampling, each ordinate xi represents the median of its respective 
probability interval [𝑃1"#	, 𝑃1].   
 
 The Effective Sample Size (ESS) of a particle approximation is defined by 
                ESS = 1/∑ 𝑝1$8

16# 	.   
Clearly ESS = N if all particles have equal probability 1/N.  If the particles have been 
drawn randomly and independently, ESS is inversely proportional to the variance of the 
particle estimate of the mean of a finite-variance distribution.7  However, if the particles 
are not independent, as is often the case in particle filtering, equal weights are not 

 
7  Although stable shocks have infinite variance when α < 2, the filter distribution has finite variance after t 
= 1 so long as α > 1, because its tail densities are then the product of the O(x–(α+1)) power tails of the 
predictive density and those of the likelihood of the newest observation.   
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necessarily optimal.  A low ESS is clearly undesirable, but a high ESS may be deceptive 
if the particles are not independent.   
  
 The Basic particle filter (with rank-stratification) proceeds as follows: 
 
 I (Initialization):  The particle filter is initialized for t = 1 by a stratified draw  
< 𝑥#,1? , 𝑝#,1? > from the initial filter density f(y1 – x1):  

 𝑥#,1? = 𝑦# − F"# D1 −
1"0.;
8
H ;		𝑝#,1? = 1/𝑁, 𝑖 = 1,…𝑁 

 
 R (Resampling):  Given the time t filter < 𝑥!,1? , 𝑝!,1? >, the resampled particles      
< 𝑥!,1@ , 𝑝!,1@ > are an equal-weighted rank-stratified draw from the interpolated step-
function distribution defined by the sorted filter particles.  Many prior studies instead 
inefficiently draw a random sample with replacement from the multinomial distribution 
defined by the filter particles.8  (This resampling step is redundant when t = 1, since the 
particles already have equal weights.)   
 
 P (Propagation):  The time t predictive (P) or prior distribution is simulated with 
particles < 𝑥!,1A , 𝑝!,1A >, where  
 𝑥!,1A = 𝑥!,1B + �̂�C"(1); 							𝑝!,1

A = 𝑝!,1? ,  
the �̂�1 , 𝑖 = 1,…𝑁 are a perfectly representative stratified sample of size N from the signal 
distribution G(𝜂), and Jt(i) is a random permutation of the first N integers.  Most, if not 
all, previous studies instead employ an imperfectly representative random sample from 
G(𝜂).  
 
 U (Updating): The new time t + 1 posterior filter distribution is simulated with 
particles < 𝑥!%#,1? , 𝑝!%#,1? >, where  
 𝑝!%#,1? ∝ 𝑝!,1A 	f(𝑦!%# − 𝑥!,1A 	);     𝑥!%#,1? =	𝑥!,1A ; 
and the probabilities are normalized to sum to 1. 
 
 Iteration:  Replace t with t + 1, and repeat steps R, P, and U until t > T. 
 
 Bayesian credible intervals (CIs) for the state variable xt may be derived by 
inverting the interpolated cumulative distribution defined by the filter particles.  Many 

 
8  Significant exceptions are Kitagawa (1996), Carpenter et al. (1999), and Malik and Pitt (2011).  
However, Kitagawa and Carpenter et al. take the particles in arbitrary order, and hence do not consolidate 
adjacent weak particles.  Although their sampling is stratified, it is not rank-stratified.  The same is also true 
of the “stratified,” “systematic” and “residual” methods described by Hol et al. (2006).  Malik and Pitt 
(2011) do use rank-stratified resampling, with interpolation, as in the present paper.   
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authors instead use the resampled filter particles, but this is a mistake:  Although the 
resampled filter has a “perfect” ESS of N, it obviously contains no more information than 
the raw filter.  Its high ESS is deceptive, because its particles are even less independent 
than those of the raw filter.  Even if the resampling is rank-stratified, the resampled filter 
is a corrupt, “lossy” version of the raw filter, that effectively rounds large filter 
probabilities to an integer multiple of 1/N, and that erases much of the detailed 
information contained in the weak particles.  Going forward, it is essential to resample in 
order to maximize the independence of the propagation step and to eliminate weak 
particles, but the raw filter is the definitive simulation of the filter distribution.  
 
 For the purpose of resampling and computing credible intervals, the “lumpiness” 
of the step-function approximation to the filter distribution may be mitigated inside the 
interval [𝑥#?, 𝑥8? ] by considering each particle to represent the median of its probability 
interval, and then linearly interpolating between the midpoints 𝑄!,1?  of the risers in the step 
function approximation, as follows: 

 HW!?(𝑥) = 𝑄!,1"#? + b𝑄!,1? − 𝑄!,1"#? c	 '"'",$%&
'

'",$
' "'",$%&

' ,			𝑥	 ∈ [𝑥!,1"#? , 𝑥!,1? ],  (11) 

where  
 𝑄!,1? = b𝑃!,1"#? + 𝑃!,1? c 2;				⁄ 	𝑃!,1? =	∑ 𝑝!,5?1

56# ; 					𝑃!,0? ≡ 0.      
Malik and Pitt (2011) employ such an interpolation in their resampling step and note the 
additional advantage that it makes the estimated likelihood a continuous function of the 
underlying hyperparameters.   
 

However, if we interpret 𝑥!,#?  as telling us the median of the probability interval 
(0, 𝑝!,#? ), probability 𝑝!,#? /2 could lie anywhere in (−∞, 𝑥!,#? ), and similarly for 
probability 𝑝!,8? /2 above 𝑥!,8? .  It would clearly be overly confident to place all this 
probability at 𝑥!,#?  or 𝑥!,8? 	as per the step-function approximation, and ordinarily even to 
extrapolate linearly below p𝑥!,#? , 	𝑥!,$? q or above p𝑥!,8"#? , 	𝑥!,8? q.  In the interest of erring on 
the side of caution, we therefore consider a credible interval boundary to be undefined 
(i.e. ± ∞) if its probability is less than 𝑝!,#? /2 or greater than 1 − 𝑝!,8? /2.  It may therefore 
be informative to have some small probability particles at each end of the filter 
distribution, rather than striving for equal probabilities throughout.    
 
 Figure 5 shows the Bayesian 50% and 95% credible intervals that result when the 
Basic filter is applied to the data in Figure 4, with N = 100 and rank-stratification.  The 
bold line is the posterior median.  It may be seen that the Basic filter is quite slow to 
detect the pronounced regime shift that occurs at t = 53.  On close inspection, it may also 
be seen that for several periods after this shift, the lower bound of the 95% CI is 
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undefined, indicating that the particles are so uneven in probability that 𝑝!,#? /2 is greater 
than 0.025, despite having used 100 particles.    
 

 
Figure 5 

Bayesian 50% and 95% credible intervals for the data of Figure 4, using the Basic filter, 
with N = 100.  The heavy red line is the posterior filter median.  The blue line represents 

the unobserved state variable xt.  The red stars are the observations yt.   
 
 
 
 Mathematically, the filter distribution has infinite support, so that when an outlier 
like y53 or y72 appears, a weak, albeit perhaps microscopic, mode will immediately appear 
in the filter in its vicinity.  If subsequent observations reinforce this outlier, this second 
mode will become stronger, and eventually there will be a “paradigm shift” in the sense 
of Kuhn (1962), in which the second mode abruptly and nonlinearly becomes stronger 
than the first and eventually takes over.9  However, the Basic resampling step treats the 

 
9  If the errors are all Gaussian as assumed by the familiar Kalman filter, the posterior filter is also Gaussian 
and therefore unimodal, the filter mean reacts linearly to the new observation, and such nonlinear Kuhnian 
paradigm shifts do not occur.   
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support of the filter distribution as [𝑥!,#? , 𝑥!,8? ] without extrapolation, or as a small 
extension of this interval if linear extrapolation is employed, so that it is literally 
impossible that a regime shift outside this range could ever have occurred.  Zero times 
anything is still zero, so the second mode never develops, no matter how many times it is 
reinforced with observations.  Eventually, the propagation step will generate particles in 
the vicinity of the data, but it may take an inordinately large number of particles to 
capture the regime shift in a timely manner through this diffusion alone.     
 
5.  ADAPTIVE RESAMPLING 
 
 In order to increase the number of predictive particles in the vicinity of a new 
observation, and at the same time to make the t+1 filter probabilities as nearly equal as 
possible, Pitt and Shephard (1999) propose “adaptively” resampling 𝑥!,1?  with probability 
proportional to 𝑝!,1? a!(𝑥!,1? ), where at(x) is an “auxiliary distribution” centered on yt+1, 
rather than with probability 𝑝!,1?  itself.  In order to preserve the filter probabilities, they 
then assign each draw 𝑥!,5@  obtained from 𝑥!,1?  a resampled probability 𝑝!,5@  proportional to 
1/a!(𝑥!,1? ).   
 
 The time t+1 updated filter weights will be equal in expectation (given xt and yt+1 
but not ηt+1 or xt+1), if   
 aD(𝑥!) = E(f(𝑦!%# − 𝑥!%#)|𝑥! , 𝑦!%#)  
            = ∫ f(𝑦!%# − 𝑥! − 𝜂!%#)g(𝜂!%#)𝑑𝜂!%# 
           	= φ(𝑦!%# − 𝑥!) , 
where the “bridge” distribution φ(•) is the convolution of f(ε) and g(η).  For most choices 
of f(ε) and g(η), this convolution is intractable and an approximation must be 
substituted.10  However, if f(ε) and g(η) are stable with our assumptions, the above scale 
and skewness rules (8) and (9) imply  
 φ(•) ~ S(α, βφ, cφ, 0),  
where  
 𝑐E- = 𝑐F- + 𝑐G-, 
 𝛽E = 𝛽H𝑐F-/𝑐E-,  
so that  
 at(x) ~ S(α, −βφ, cφ, yt+1) . 
 

 
10  For example, if f(ε) and g(η) both have finite variance, it would ordinarily be adequate to scale f(ε) up in 
proportion to the standard deviation of ε + η. 
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 Note that although this Adaptive resampling increases the ESS of the time t+1 
filter, it at the same time reduces the independence of the resampled particles, as well as 
the ESS of the time t predictive density.  It therefore provides at best a mixed benefit.   
 
 Figure 6 shows 50% and 95% filter credible intervals for the state variable, for the 
data of Figure 4 and N = 100, using Adaptive resampling with rank-stratification from the 
implied step function.  Again, the filter is slow to detect the obvious regime shift at t = 
53, although it is not quite as slow as the Basic filter.  Although this Adaptive filter does 
generate more particles near to y53, it is still constrained to draw resampled points entirely 
from the interval [𝑥!,#? , 𝑥!,8? ], under the usual interpretation that it is impossible that xt 
could ever be outside this interval.  Despite the effort to make the filter particles as equal 
in weight as possible, the lower 95% CI boundary is again undefined as the filter catches 
up with the data after t = 53, and again at t = 72.   
 

 
 

Figure 6 
Bayesian 50% and 95% credible intervals for the data of Figure 4, using the Adaptive 
filter with N = 100.  The heavy red line is the posterior filter median.  The blue line 

represents the unobserved state variable xt.  The red stars are the observations yt. 
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6.  WHISKER PARTICLES 
 
 In nature, many species have evolved negligible-mass extensions of their bodies, 
called “whiskers,” which enable them to detect objects in their vicinity, even in complete 
darkness, before they actually bump into them.  Taking a cue from nature, the present 
study therefore adds minute “Whisker particles” outside the range of the filter particles to 
the particle set when resampling, in order to provide early detection of possible regime 
shifts.  
 
 In order to concentrate some precision in the neighborhood of yt+1 in the spirit of 
Adaptive resampling, while at the same time preserving much of the independence in the 
time t filter, we will resample the time t filter distribution by drawing NA = θAN points 
from At(x), the cumulative of at(x), and NB = N – NA points from the time t filter itself, for 
some θA Î [0, 1].  It is easy enough to draw NA stratified points from At(x), but the ones 
we are primarily interested in may lie outside the interval [𝑥!,#? , 𝑥!,8? ], and even outside its 
extension by linear extrapolation.  In order to calibrate the probability of these points to 
the filter distribution, we observe that if we interpret 𝑥!,#?  as representing the median of 
the probability interval (0, 𝑝!,#? ), probability 𝑝!,#? /2 could lie anywhere below 𝑥!,#? , and 
similarly for probability 𝑝!,8? /2 above 𝑥!,8? .  It would clearly be overly informative to 
place all this probability at 𝑥!,#? 	or	𝑥!,8?  as is implicit in the Basic and Adaptive filters.  At 
the other extreme, if we were to a spread it uniformly (with zero density) over the interval 
(−∞, 𝑥!,#? ) or (𝑥!,#? , ∞), as implicit in the conservative rule for CIs set out above, the 
Whisker particles in this range would all have 0 probability.  The true time t filter density 
as given by (5) is proportional to the product of the time t-1 predictive density, which 
ordinarily decreases slowly outside p𝑥!"#,#A , 𝑥!"#,8A q = p𝑥!,#? , 𝑥!,8? q, times the time t 
likelihood f(yt – x).   A reasonable (albeit still somewhat conservative) way to allocate the 
filter density in these tail ranges is therefore in proportion to the likelihood, so that it 
cumulates as follows: 

    HW!?(𝑥) = u
b1 − F(𝑦! − 𝑥)c

I",&
' /$

#"?JK""'",&
' L
,			𝑥 < 	 𝑥!,#?

1 − 	F(𝑦! − 𝑥)
I",(
' $⁄ 	

?JK""'",(
' L

,								𝑥 > 	 𝑥!,8? .
					 

Inside [𝑥!,#? , 𝑥!,8? ], we may linearly interpolate HW!?(𝑥) between the midpoints of the risers 
in the step function approximation, as in equation (11) above.   
 
 In order to calibrate the NA particles representing At(x) to this extended filter 
distribution HW!?(𝑥), we introduce a cumulative form of importance sampling, rather than 
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using the customary density form as outlined by Geweke (1989):11  First, we observe that 
in general we want each particle xt,i to represent the median of its respective probability 
interval [Pt,i-1, Pt,i], in terms of the calibrating filter distribution.  We therefore use the 
auxiliary distribution to partition the real line into NA intervals [zt,i-1, zt,i] with equal 
probability under the auxiliary distribution, so that  
 𝑧!,1 = A!"#(𝑖/𝑁N),					𝑖 = 0,…	𝑁N; 				𝑧!,0 ≡ −∞,					𝑧!,8) ≡ +∞, 
and then use the interpolated and extended filter distribution to compute calibrated 
cumulative probabilities for these boundaries:  
 𝑃!,1N = HW!?b𝑧!,1c;				𝑃!,0N ≡ 0,					𝑃!,8)

N ≡ 1 . 
 
 At this point, we could use these cumulative probabilities to compute particle 
probabilities, with ordinates assigned at the midpoints of these probability ranges per the 
calibrating filter distribution, and then merge these particles with NB = N – NA basic 
particles drawn with equal probabilities from the interpolated and extended filter 
distribution in the usual manner.  However, merging the auxiliary and basic particles 
directly would result in auxiliary particles that had very unequal probabilities in the 
resampled filter and therefore in the subsequent predictive distribution, along with basic 
particles that had very unequal expected filter probabilities in the next updating step.  We 
can improve the ESS of both the predictive and expected future filter particles by instead 
also characterizing the basic particles in terms of their probability boundaries 
 𝑃1O = 𝑖/(𝑁O + 1),   i =  1, ... NB, 
and then interleaving the two sets of probability boundaries by merging and sorting them, 
to obtain N+1 Resampled probability boundaries 𝑃!,1@ , i = 0, ... N.  We then define  
 𝑝!,1@ = 𝑃!,1@ − 𝑃!,1"#@ , 𝑖 = 1,…𝑁, 

 𝑥!,1@ = HW!?
"#(𝑃!,1@ − 𝑝!,1@ /2). 

(Because the auxiliary probability boundaries already contain the default boundaries 0 
and 1, it would be redundant to include these in the basic boundaries.  If NA = 0, we 
would instead set 𝑃1@ = 𝑖/𝑁, i = 0, ... N.) 
 
 Because of the basic boundaries, no interleaved resampled particle will have 
probability greater than 1/NB, while because of the auxiliary boundaries, no filter particle 
in the next update step will have expected probability greater than 1/NA.  However, it may 
happen that some of the probability boundaries as computed above will be very close to 
one of their neighbors, and hence will produce particles with near-zero weight that 

 
11  Although a particle representation can consistently estimate the cumulative distribution, it does not 
consistently estimate the density function, since even with interpolation, the arc derivatives between 
particles tend either to zero or infinity as the number of particles increases.  The customary density-based 
importance sampling therefore will not work if the particles are actually drawn, either randomly or with 
stratification, from at(x).  In the Adaptive filter of Section 5, the particles are in fact being drawn from a 
discrete distribution governed by at(x), and not from At(x) itself. 
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essentially go to waste.  In order to prevent this and thereby modestly increase the 
resampled ESS, we “equilibrate” the boundaries, by replacing half of the merged 
boundaries with the average of their two neighbors before computing the resampled 
particle probabilities and ordinates.  This equilibration step gives at best only a slight 
improvement in filter performance, but is virtually costless, and unexpectedly turns out to 
make the computed likelihood a substantially smoother function of the hyperparameters.  
 
 Figure 7 shows credible intervals using the Whisker particle filter with N = 100, 
θA = 0.25 (as recommended in section 9 below), and using the data of Figure 4.  Note that 
the filter quickly identifies the regime shift at t = 53 despite the small number of particles, 
while recognizing t = 72 as a measurement error.  We would ordinarily want to use far 
more than 100 particles in order to reduce granularity and to obtain precise estimates of 
the filter probabilities, but it is clearly beneficial to start with a method that gives robust 
results with only a modest value of N.    
 
 

 
Figure 7 

Bayesian 50% and 95% credible intervals for the data of Figure 4, using the Whisker 
filter, with N = 100 and θA = 0.25.  The heavy red line is the posterior filter median.  The 

blue stars are the observations yt.   
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 When particle filtering, it is very useful to monitor ESS, since it provides an upper 
bound on the effective independent sample size and therefore the precision of results.  
Figure 8 plots the Effective Sample Size (ESS) corresponding to the Whisker filter 
estimates in Figure 7.   At t = 1, this necessarily equals the actual number of particles, N 
= 100, since the filter is initialized with equal weights.  Afterwards, it never rises above 
85, and has an average value of 68.2, indicated by the horizontal red line.  It often falls 
below 50, and the extraordinary regime shift at t = 53 causes it to fall to 23.1 immediately 
afterwards at t = 54.  However, despite the occasionally low value of ESS, the 95% CI 
boundaries in Figure 11 are defined for all t.  Table 6 in section 9 below shows that 
occasionally the ESS can fall precariously low, even with N = 100,000. 
 
 

 
Figure 8 

Effective Sample Size (ESS) for the Whisker filter estimates of Figure 7.  Red horizontal 
line indicates average value. 
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 Figure 9 plots credible interval half-ranges (i.e. measured from the posterior 
median, both above and below) for the whisker filter estimates in Figure 7.  The thin red 
and blue lines show the upper and lower half-ranges, respectively, for the 95% credible 
interval, while the bold red and blue lines show the upper and lower half-ranges for the 
50% credible interval.  As in the Gaussian Kalman filter case, the credible interval ranges 
start off high and then fall as more data is observed.  However, unlike the Gaussian case 
governed by the Kalman filter, the scales do not settle down to a constant and 
symmetrical value, but rather respond asymmetrically to outliers in both the signal and 
noise errors.  The 95% CIs are particularly wide immediately after the t = 53 regime shift, 
reflecting temporary uncertainty as to which type of shock has just occurred.       
 

Figure 9 
Credible interval half-ranges for the Whisker filter estimates of Figure 7. 

 
 
 
 Table 1 gives the computation time for one pass through the Whisker Filter 
algorithm using the data of Figure 4 for T = 100, and the same data extended to T = 1000, 
with N = 100, 1000, 10,000, 100,000, and 1,000,000.  In each case, the algorithm is given 
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the true value of the parameters, and times do not include any plots or computation of 
data or credible intervals.  Calculations were performed in 64-bit Matlab R2017a on a 
MacBook Pro with a 2.5GHz Quad-Core Intel Core i7 processor and 16 GB of memory, 
using the “quick” routines stableqkpdf, stableqkcdf, and stableqkinv from Nolan’s (2009) 
STABLE 5.1 for Matlab package.   
 
 Although the time is theoretically O(TN logN), it may be seen that it barely 
increases by a factor of 2 in passing from N = 100 to N = 1000, for either value of T, 
consistent with fixed startup costs.  It does increase by almost the predicted factor of 13.3 
between N = 1000 and 10,000 for either value of T, and 12.5 between N = 10,000 and 
100,000 for T = 1000.  However, in passing from N = 100,000 to 1,000,000, the time 
increases by a factor of 33 for T = 100 and 83 for T = 1000, far in excess of the predicted 
factor of 12.0.  This unexpected slowing is probably due to the computer running out of 
high-speed memory, requiring it to page intermediate results out into flash storage, since 
no attempt was made to conserve on memory use.  This issue may also account for the 
unexpected slowing between N = 10,000 and 100,000 with T = 100, though if anything 
memory should be less of an issue with T = 100 than 1000.  In passing from T = 100 to T 
= 1000, the time does increase roughly by the expected factor of 10, at least for N £ 
10,000. 
 
 

Table 1 
Whisker Filter Computation Times 

(Seconds) 
 

N T = 100 T = 1000 
100              0.0327           0.263 
1000              0.0545           0.565 

10,000            0.584         4.55 
100,000      14.1      49.7 

1,000,000 1177. 1652. 
 
 
 
7.  RPU VS. PRU 
 
 The traditional sequence of particle filtering steps as described in section 4 is 
Resample – Propagate – Update, or what might be called RPU.  It has recently been 
proposed by Carvalho et al. (2010) and Singpurwalla et al. (2017) to switch the R and P 
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steps when using Adaptive resampling as follows:  Propagate – Resample – Update, or 
what might be called PRU.  This allows Resampling to be “completely adapted,” by 
setting  
 𝑎!(𝑥) = 	f(𝑦!%# − 𝑥), 
so that the time t+1 filter weights are all 1/N and the Update step becomes trivial.   
 
 However, even though PRU makes the filter particle weights all equal, it also 
makes them even less independent than they are with conventional RPU Adaptive 
resampling, since many time t+1 filter particles now contain the same time t propagation 
errors in addition to the same time t filter values.  Equal weights do give ESS = N, but 
this is only optimal to the extent that the particles are independent.  This apparent 
advantage of PRU is therefore illusory.  It is more important that Adaptive resampling be 
modified to generate Whisker particles potentially outside the range of the filter particles 
as in Section 6.   
 
8.  MIXTURE KALMAN FILTERING 
 
 Chen and Liu (2000) observe that if f(ε) and g(η) can both be represented as a 
mixture of normal distributions, with random variances and/or means, the filter 
distribution can also be approximated by a finite mixture of normal distributions in which 
the particle mass points are replaced by Gaussian densities, and a large part of the work 
of filtering can be efficiently performed by the Kalman filter.  Chen and Liu call this the 
“Mixture Kalman Filter” (MKF). 
 
 MKF has the theoretical advantage over particle filtering that the implied filter 
distribution will be smooth and will have unbounded support without the ad hoc 
extensions that we used to calibrate any whisker particles that lie outside the range of the 
raw filter particles.  
 

In MKF, there is little, if any, advantage to rank-stratifying the resampling over 
the density means before Resampling, since the density means are not unambiguous 
indicators of their locations.  Resampling should still be stratified, however, but taking 
the components in their received order with no ranking or shuffling.  As long as 
descendants of a common ancestor are left together sequentially, not shuffling will tend 
to make the resampling of a common ancestor’s descendants more representative.  If the 
resampling is not rank-stratified, there is no point to using interpolation.   
 
 Perhaps the biggest disadvantage of MKF is that its Update step relies on a 
random pairing of prediction and observation densities, whereas any of the particle filter 
supdates each particle precisely using the observation density with no additional random 
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element in the Update step.  This random pairing greatly increases the random element of 
the MKF estimates.  Likewise, although in theory it would be advantageous use adaptive 
resampling of the time t filter densities, resampling each in proportion to its expected 
contribution to the time t+1 likelihood, this would not be helpful in practice, since the 
required auxiliary proposal distribution could only be simulated with a great deal of noise 
or additional computation.    
 
 Symmetric stable random variables with exponent 𝛼	can be precisely represented 
as scale mixtures of normals, using positive stable random variables with exponent 𝛼/2	
and	skewness	𝛽	=	1	as	the	subordinating	variances,	per	a	1955	theorem	of	Salomon	
Bochner,	given	in	Proposition	1.3.1	of	Samorodnitsky	and	Taqqu	(2004),	with	their	
𝛼’	=	2.		If	both	the	observation	and	transition	errors	are	symmetric	stable,	it	
therefore	is	possible	to	directly	employ	the	MKF	of	Chen	and	Liu,	as	has	already	
been	implemented	by	Lombardi	and	Godsill	(2006).12		The	Bochner	approach	has	
the	advantage	that	it	can	generate	a	single,	perfectly	representative,	rank-stratified	
sample	that	can	be	reused	with	random	permutations	for	each	t.			
 
 However, economic data often are significantly skewed.  McCulloch and Percy 
(2013), e.g., find, using an Extended Neyman Smooth goodness-of-fit test, that four 
competing symmetric heavy-tailed distributions, including the symmetric stable, can all 
be rejected as a model for US stock returns, primarily because of the presence of 
skewness.  It follows that at least the observation errors should not be constrained to be 
symmetric.  In the empirical results below, we find 𝛽e estimates of −0.62, +0.57, and 
+1.00 for stock returns, inflation, and Bitcoin returns, respectively.  Unfortunately, there 
is no direct extension of the Bochner stable subordination theorem to the skew-stable 
case at the present time.   
 
 Nevertheless, Lemke, Riabiz and Godsill (LRG, 2015) have exploited a 
representation of skew-stable distributions as an infinite sum of normal random variables, 
with random variances and means governed by two simple transforms of a realization of 
an infinite Poisson series, as given by Proposition 1.4.2 of Samorodnitsky and Taqqu 
(2004), to develop an approximation based on a finite truncation of the Poisson series, 
with an adjustment that matches the first two moments of the truncated terms.  Although 
the resulting mixture of normals based on the finite truncation is not precisely skew-
stable, they report that it can yield a very good approximation.   
 

 
12  In	the	model of Lombardi and Godsill (2006),	the	state	variable	is	a	musical	signal	that	they	assume	
to	be	Gaussian,	but	its	innovations	could	as	easily	have	been	non-Gaussian	symmetric	stable	instead.		
Their	equation (2) erroneously states, in their notation, X1X2 ~ S(𝛼,	0).		This	should	be	X1√X2 ~ S(𝛼,	0).		
However,	the	correct	formula	is	applied	in	their	equation	(8)	and	presumably	in	their	calculations.			
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 One disadvantage of the LRG approach in the context of filtering is that rank-
stratification of the observation components in the Update step is no longer feasible.  This 
means that the simulated observation components must be laboriously computed from 
scratch for each t, and their magnitudes will be erratically random rather than perfectly 
representative. 
 
 Details of our implementation of the MKF using the LRG simulation of skew-
stable observation errors are given in the Appendix.   
 
 Figure 10 shows credible intervals for the Mixture Kalman Filter estimates of the 
state variable, using the data of Figure 4 and N = 100 components.  The MKF quickly 
detects the regime shift at t = 53, without being unduly distracted by the big observation 
error at t = 72.  For this example, at least, the MKF behaves very similarly to the Whisker 
filter in Figure 7. 
 

 
 

Figure 10   
Bayesian 50% and 95% credible intervals for the data of Figure 4, using the Mixture 

Kalman filter, with N = 100.  The heavy red line is the posterior filter median.  The blue 
stars are the observations yt.   
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 Since the MKF does not employ a sorting step when Resampling, its theoretical 
computation time is O(TN), rather than O(TN logN) as for the Whisker Filter.  Table 2 
below shows the time, in seconds, for one pass through the filter as in Table 1.  In most 
cases, the elapsed time is roughly proportional to both T and N up to N = 100,000.  As is 
the case with the Whisker filter, there is some unpredicted slowing down at N = 
1,000,000 though it is relatively minor.     
 
 
 
 

Table 2 
Mixture Kalman Filter ComputationTimes 

(Seconds) 
 

N T = 100 T = 1000 
100             0.306            2.02 
1000           2.08        17.1 

10,000       20.1     171. 
100,000   218.   1856. 

1,000,000 2968. 39,875. 
 
 
 
 Comparing Tables 1 and 2, it may be seen that the MKF is always slower than the 
Whisker Filter for equal values of N and T.  In the vicinity of N = 10,000, it is about 35 
times slower, despite our attempt to vectorize the calculation as much as possible.  This 
relative slowness is most likely due to the calculation-intensive Poisson series method of 
simulating skew-stable distributions proposed by LRG.  Unless the MKF is substantially 
more accurate than the Whisker Filter for equal values of N, it is clearly dominated by it. 
 
9.  SIMULATIONS 
 
 In order to compare the relative accuracies of the filtering methods described, we 
construct Monte Carlo simulations of the LLM and then, for each simulation, compute 
the Mean Absolute Error (MAE) over all but the first 10 observations, computed as 
follows:   
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 MAE = 	 #
P"#0

∑ e∑ 𝑥!,1? 𝑝!,1?8
16# − 𝑥!eP

!6##  . 
The first 10 observations are excluded as being unrepresentative, since any filter 
necessarily takes some time to “learn” a representative amount about the state variable.    
 
 Table 3 tabulates the average MAE over 1000 Monte Carlo simulations, each of 
length T = 100, with α = 1.1, 1.3, 1.5, 1.7, and 1.9, and with N = 100, 1000, 10,000, and 
100,000 particles.  In each simulation, βε = 0.3, βη = 0.0, and cη / cε = 0.25, as in the above 
illustration.  The first two columns show results for the conventional Basic and Adaptive 
filters as described above, using rank-stratified rather than the customary random 
sampling and resampling.  The next two columns use the proposed Whisker filter, first 
with 50% adaptive particles, and then with 25% adaptive particles.  The same seed was 
used to generate the data for each of the simulations, so that the different methods use 
exactly the same simulated series for each α and N.  Since the Chambers et al. (1976) 
stable random number generator is a continuous function of α and β, this also makes the 
simulations for different values of α as similar as possible.  In every case, the filter is 
given the true values of the stable parameters, so that no hyperparameter estimation error 
is involved.  
 
 All the methods considered are consistent, so that as the number of particles N 
becomes large, the particle or Mixture Kalman filter approximation converges in 
distribution to the mathematical filter distribution determined by Equations (3), (4) and 
(5) above.  In all cases, this limit appears to have been well approached with 100,000 
particles.  However, for α = 1.1, 1.3 or 1.5 and N = 100, 1000 or 10,000, the Whisker 
filter is clearly more accurate than either the Basic or Adaptive filters.  The same is true 
for α = 1.7 with N = 100 or 1000.  With α = 1.9, the advantage of the Whisker filter is 
greatly reduced, but still is present.  It is interesting that the Adaptive filter has only a 
small advantage over the Basic filter, and then only for the smaller values of α. 
 
 Comparison of columns 3 and 4 of Table 3 shows that while there is not much 
difference between θA = 0.50 and θA = 0.25, the latter is slightly better more often than 
not, and therefore is to be preferred.  It should be noted that θA = 0.0 is not much different 
from the Basic filter, so that there is probably not much to be gained from further 
reduction in θA below 0.25.  We also attempted 100% Adaptive Whisker particles (θA = 
1.0, not tabulated), but this occasionally gave a disastrous fall in ESS to within rounding 
error of 1.0000, and hence is not recommended.  
 
 Table 4 tabulates the worst-case maximum value of MAE over the 1000 
replications of Table 3.  For N = 100, 1000, and 10,000, the Whisker filter performs 
dramatically better than the Basic and Adaptive filters, confirming the results in Table 3.  
The Basic and Adaptive filters admittedly do happen to outperform the Whisker filter in 
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this extreme scenario when N = 100,000.  Nevertheless, the average MAE results in 
Table 4 show that there is essentially no difference across methods in these cases when 
all 1000 replications are averaged together.   
 
 Table 5 gives the average, over the 1000 replications of Tables 3 and 4, of ESSmin, 
the minimum of ESS over the T  = 100 observations of each simulation.  It may be seen 
that average ESSmin is only a small fraction of the actual number of particles N, and 
generally is smaller, the smaller is α.  Even N = 1000 often gives precariously small 
values of ESSmin, particularly if α is less than 1.7.  Average ESSmin does increase with N, 
but not quite in proportion to it.  It is clear that one should use at least 1000, and 
preferably even 10,000 particles for reliable credible intervals with T = 100.  As T 
increases, the odds of encountering difficult observations increase, so that N should 
prudently be a large multiple of T.   
 
 Table 6 gives the minimum over the 1000 replications of ESSmin.  It is apparent 
that in these 1000 replications, there is at least one scenario which even the Whisker filter 
has great trouble analyzing for all t.  Although the Whisker filter is generally more robust 
than the Basic or Adaptive filters, it is clearly not entirely foolproof.  These worst-case 
scenarios deserve further exploration that goes beyond the scope of the present paper.   
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Table 3 

Average Mean Absolute Error 
1000 Replications 

T = 100, βε = 0.3, βη = 0.0, cη / cε = 0.25 
 

 N Basic Adaptive Whiskers 
θA = 0.50 

Whiskers 
θA = 0.25 

Mixture 
Kalman 

Beta 
MKF 

α = 1.1        
 100 17.80 17.53 2.15 1.90 6.46 2.97 
 1000 11.33 11.25 2.37 2.18 4.71 2.40 
 10,000  6.53  6.15 2.24 2.03 1.89 2.12 
 100,000  1.93  1.87 2.02 2.11 NA NA 

α = 1.3        
 100 4.31 4.19 1.14 1.08 2.36 1.42 
 1000 2.78 2.76 1.20 1.14 1.91 1.20 
 10,000 1.81 1.69 1.14 1.11 1.05 1.11 
 100,000 1.06 1.04 1.10 1.10 NA NA 

α = 1.5        
 100 1.64 1.60 0.82 0.79 1.21 0.92 
 1000 1.22 1.21 0.83 0.81 0.91 0.83 
 10,000 0.95 0.91 0.80 0.80 0.78 0.79 
 100,000 0.78 0.78 0.79 0.79 NA NA 

α = 1.7        
 100 0.89 0.87 0.67 0.66 0.75 0.71 
 1000 0.78 0.78 0.67 0.66 0.70 0.67 
 10,000 0.69 0.68 0.66 0.66 0.65 0.65 
 100,000 0.65 0.65 0.65 0.65 NA NA 

α = 1.9        
 100 0.61 0.61 0.58 0.57 0.58 0.59 
 1000 0.60 0.60 0.57 0.57 0.58 0.58 
 10,000 0.58 0.58 0.57 0.57 0.57 0.57 
 100,000 0.57 0.57 0.57 0.57 NA NA 

 
Note:  Average of simulated Mean Absolute Error over 1000 replications with sample 
size T = 100 each, for α = 1.1, 1.3, 1.5, 1.7, and 1.9, using N = 100, 1000, 10,000, and 

100,000 particles.  In all cases, βε = 0.3, βη = 0.0, and cη / cε = 0.25.  In each replication, 
MAE is computed for t = 11, ... 100.  NA indicates Not Attempted. 
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Table 4 

Maximum Mean Absolute Error 
1000 Replications 

T = 100, βε = 0.3, βη = 0.0, cη / cε = 0.25 
 

 N Basic Adaptive Whiskers 
θA = 0.50 

Whiskers 
θA = 0.25 

Mixture 
Kalman 

Beta 
MKF 

α = 1.1        
 100 2333.7 2333.9 106.2 123.9   946.4 179.8 
 1000 2328.9 2329.1 141.4 156.4 1307.8 179.8 
 10,000 1720.8 1672.8 157.0 142.4      65.1 179.5 
 100,000     91.1     71.2 145.8 148.0 NA NA 

α = 1.3        
 100 501.7 501.9 20.4 23.9 288.6 38.4 
 1000 495.5 496.1 38.6 27.9 584.4 38.4 
 10,000 289.5 220.1 38.5 38.6   14.0 35.7 
 100,000   17.9   14.4 27.6 30.5 NA NA 

α = 1.5        
 100 147.8 148.1   7.8   6.7 79.2 11.7 
 1000 141.0 139.4 12.2 12.1 54.8 11.7 
 10,000   63.3  39.1 12.2 12.2   4.5  7.6 
 100,000    4.6   4.7   8.3   9.2 NA NA 

α = 1.7        
 100 48.9 49.4 3.3 2.7 22.5 4.3 
 1000 43.6 43.6 3.5 3.3 19.7 4.4 
 10,000 15.0 13.9 4.7 4.6   2.0 2.0 
 100,000   2.0   2.0 3.3 3.4 NA NA 

α = 1.9        
 100 11.3 11.8 1.5 1.3   3.8 1.8 
 1000 10.7   9.7 1.9 1.9   6.2 1.8 
 10,000   4.8   4.7 1.5 1.9   1.1 1.1 
 100,000   1.1   1.1 1.5 1.5 NA NA 

 
Note:  Maximum of Mean Absolute Error over the 1000 simulations of Table 3.  In each 

replication, MAE is computed for t = 11, ... 100.  NA indicates Not Attempted. 
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Table 5 
Average ESSmin 

1000 Replications 
T = 100, βε = 0.3, βη = 0.0, cη / cε = 0.25 

 
 N Basic Adaptive Whiskers 

θA = .50 
Whiskers 
θA = .25 

Mixture 
Kalman 

Beta 
MKF 

α = 1.1        
 100    5.4    7.4    5.4    5.9     3.3     3.3 
 1000   23.5   29.0   21.5   26.4   32.7   23.2 
 10,000 130.8 144.1   96.0 119.7 326.0 221.5 
 100,000 842.3 906.1 543.8 718.7 NA NA 

α = 1.3        
 100     10.8     13.2      8.6     10.9     4.1     3.7 
 1000     44.7     58.4     36.8     50.1   40.5   27.7 
 10,000   260.4   304.3   194.1   242.1 402.9 365.9 
 100,000 2017.0 2229.0 1253.0 1734.9 NA NA 

α = 1.5        
 100     20.2     33.1     16.1     21.0    5.2     4.4 
 1000     75.7   101.1     65.2     80.8  51.5   34.2 
 10,000   514.1   622.6   356.2   491.8 513.5 332.6 
 100,000 4144.4 4847.1 2642.1 3627.8 NA NA 

α = 1.7        
 100    28.9     63.1   23.3   29.4     8.1     6.3 
 1000  116.3   168.3 101.7 120.1   78.4   51.2 
 10,000  951.2 1283.3 676.5 910.1 780.4 501.3 
 100,000  8139. 10,624. 5326. 7379. NA NA 

α = 1.9        
 100     30.9     75.1     23.3     30.1     23.5     15.9 
 1000   249.1   496.7   184.4   241.4   220.1   140.2 
 10,000 1795.4 3287.6 1419.5 1779.0 2198.0 1383.8 
 100,000 16,537. 28,116. 11,830. 15,709. NA NA 

 
Note:  Average, over the 1000 simulations of Table 3, of ESSmin, the minimum of 

Effective Sample Size over t = 1, ... 100.  NA indicates Not Attempted. 
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Table 6 
Minimum ESSmin 
1000 Replications 

T = 100, βε = 0.3, βη = 0.0, cη / cε = 0.25 
 

 N Basic Adaptive Whiskers 
θA = .50 

Whiskers 
θA = .25 

Mixture 
Kalman 

Beta 
MKF 

α = 1.1        
 100 1.28 1.74 1.34 1.64 1 1 
 1000 1.13 1.16 1.06 1.15 1      1.11 
 10,000 1.04 1.07 1.08 1.03 1      1.78 
 100,000 1.04 2.30 1.37 1.47 NA      NA 

α = 1.3        
 100 1.55 2.21 1.39 1.84 1 1 
 1000 1.56 1.64 1.30 1.41 1      1.00 
 10,000 1.11 1.14 1.07 1.08      1.00      1.94 
 100,000 1.22 1.31 1.10 1.10 NA      NA 

α = 1.5        
 100 1.29 6.56 2.00 3.27 1 1 
 1000 1.68 4.23 1.90 2.26 1      1.00 
 10,000 1.33 1.53 1.56 1.61      1.00      1.59 
 100,000 2.41 1.85 1.84 4.11 NA      NA 

α = 1.7        
 100 1.65 20.21 4.35   5.66 1 1 
 1000 2.33 20.36 5.06   5.48 1      1.02 
 10,000 1.23   3.62 2.31   2.67      1.00      1.41 
 100,000 5.52 15.96 5.28 11.80 NA      NA 

α = 1.9        
 100 3.36   60.19   5.54   6.71 1 1 
 1000 8.24 267.42 18.22 33.19 1      1.03 
 10,000 1.59   21.81   6.78   9.73      1.00      1.30 
 100,000 3.98     4.64   5.70   3.58 NA      NA 

 
Note:  Minimum, over the 1000 simulations of Table 3, of ESSmin, the minimum of 

Effective Sample Size over t = 1, ... 100.  A value of “1” indicates computed value is 
precisely unity to within machine precision.  NA indicates Not Attempted. 
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 Column 5 of Tables 3 through 6 give results for the Mixture Kalman Filter, using 
the LRG skew-stable normal mixture simulation method as described in the Appendix.  
Since the MKF is considerably slower than the particle filters, it was not attempted with 
N = 100,000 (indicated NA). 

 
Table 3 indicates that the MKF does always perform better than either the Basic 

or Adaptive filter in terms of Average MAE for equal values of N.  However, although 
the MKF does do as well or slightly better than the Whisker filter with N = 10,000, the 
Whisker filter always performs better with N = 100 or 1000.  The MKF does close in on 
the common value for N = 100,000 by N = 10,000.   
 

The maximum MAE values for the MKF in Table 4 show that the MKF usually 
does better than the Basic and Adaptive filters by this metric as well, but is outperformed 
by the Whisker filter again for N = 100 and 1000.  By N = 10,000, the MKF approaches 
the very large N limit more closely than the Whisker filter.  With a ³ 1.7 and N = 10,000, 
the MKF does outperform the Whisker filter by this metric.   
 

The average and minimum ESSmin values for the MKF in Tables 5 and 6 are not 
directly comparable to those for the particle filters, since with the MKF an ESS of 1 is not 
a degenerate outcome as it is with the particle filters.  When a = 2, all components of the 
MKF are identical, so that their probabilities and therefore the ESS are immaterial.  
However, it is still true that with a < 2 a small ESSmin is less desireable, and particularly 
so for smaller values of a.  Nevertheless, the minimum ESSmin values in Table 6 are all 
either “1” (indicating an answer within machine precision of 1) or “1.00” (indicating an 
answer different than 1 but within rounding error of 1.00), indicating that there is at least 
one of the 1000 scenarios that the MKF has great difficulty analyzing.   

 
The last column in Tables 3 through 6 give results for a modification of the MKF 

in which the variances in the Propagation and Resampling steps are drawn with unequal 
probabilities governed by a Beta(1, 0.5) distribution, rather than equal probabilities as 
governed by a U(0, 1) distribution.  This ensures that the MKF has some very high 
variance (but low probability) components.  Details are given in the Appendix.   

 
It may be seen that this “Beta-MKF” filter greatly outperforms the Basic and 

Adaptive Filters in terms of both average and maximum MAE.  However, although it is 
competitive with the Whisker Filter in terms of MAE, the Whisker Filter almost always 
outperforms it in terms of average MAE for equal values of N.  Since the Beta-MKF is no 
faster than the standard MKF, the Whisker Filter is still more cost-effective in terms of 
computation time.   
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In summary, the proposed Whisker filter clearly outperforms the conventional 
Basic and Adaptive filters.  The Mixed Kalman filter generally does do better than the 
Basic and Adaptive filters with equal values of N, but worse than the Whisker filter 
except with a very large value of N.  Given that it is about 35 times slower than the 
Whisker filter for the same N, its use is not justified, let alone mandated, despite its 
theoretical appeal.  The proposed Beta modification of the MKF is marginally dominated 
by the Whisker filter for equal values of N, and is just as slow as the standard MKF, and 
therefore is not cost-effective.   

 
 
10.  PARAMETER ESTIMATION 
 
 With empirical data, the stable parameters are ordinarily unknown and must be 
estimated from the data itself.  A straightforward approach is to numerically maximize 
the log likelihood   
 ℒb𝛼, 𝛽H , 𝑐H , 𝑐Q|𝐘!c = ∑ log	(𝑙!)P

!6$       (12) 
where the likelihood contributions 
 𝑙! = ∑ 𝑝!"#,1A f(𝑦! − 𝑥!"#,1A )8

16# ,			𝑡 = 2,…𝑇 
are the normalization factors required in the update step.  Because of the uniform prior on 
x1, the first observation makes no contribution to the likelihood.  
 
 However, even though the exact mathematical likelihood is continuous in the 
hyperparameters α, βε, cε, and cη and ordinarily has a unique maximum,13 the numerical 
likelihood simulated by a particle filter is full of small discontinuities if the filter 
distribution is not interpolated when resampling, and may be serrated even if the filter 
distribution is interpolated.  In either case, the numerical likelihood can have numerous 
local maxima that may be nowhere near the global maximum.  As the number of particles 
increases, the discontinuities or serrations become smaller, but they also become more 
numerous.  The numerical global maximum consistently estimates the exact global 
maximum, but care must be taken that a numerical maximization routine does not settle 
on a greatly inferior local maximum.  Furthermore, since the derivatives of the simulated 
likelihood function do not consistently estimate the derivatives of the mathematical 
likelihood function, Newton-Raphson methods may well founder.   
 
 An alternative and much easier likelihood-based approach that largely avoids this 
problem is what we call the “short-cut method”:  Under the LLM with our stable 

 
13  See DuMouchel (1971).  If α and/or T are very small, it is possible for the mathematical likelihood to be 
multimodal with stable distributions.  However, so long as α > 1 and T > 100, this should not be an issue.   
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assumptions, the first differences of the observed series yt have a symmetric stable 
distribution with mean 0 and scale c1: 
 Δ𝑦! = 𝑦! − 𝑦!"# =	𝜀! − 𝜀!"# + 𝜂!	~	𝑆(𝛼, 0, 𝑐#, 0),     
where, by the scale rule (8),  
 𝑐#- = 2	𝑐H- + 𝑐Q- .		         (13) 
Furthermore, the first differences of yt at lag 2 will also have a symmetric stable 
distribution with mean 0 and somewhat larger scale c2: 
 ∆$𝑦! = 𝑦! − 𝑦!"$ =	𝜀! − 𝜀!"$ + 𝜂! + 𝜂!"#	~	𝑆(𝛼, 0, 𝑐$, 0), 
where, by the scale rule,   
 𝑐$- = 2	𝑐H- + 2	𝑐Q- .		         (14) 
Equations (13) and (14) imply 
 𝑐H- =	𝑐#- − 𝑐$- 2⁄ ,         (15) 
 𝑐Q- =	𝑐$- − 𝑐#-,        (16) 
so that if we can estimate α, c1, and c2, (15) and (16) will give us estimates of cε and cη. 
 
 Nolan’s package STABLE includes a routine stablefitmle that estimates the four 
stable parameters of an i.i.d. stable sample by Maximum Likelihood, along with their 
standard errors, as computed from the information matrix.14  A companion routine 
stablefitmlerestricted allows specified parameters to be fixed, e.g. β = 0 and μ = 0 in the 
present application.  Adjacent first differences are not independent, but they are 
independent modulo 2. That is, the first differences are independent for t = 2, 4, ... T 
(assuming T is even), as well as for t = 3, 5, ... T−1.  This means that standard ML 
estimates with asymptotically valid standard errors may be obtained from either the even- 
or odd-numbered first differences.  The two subsets will give somewhat different 
estimates of α and c1, but essentially the same standard errors, since both samples are 
approximately T/2 in size.  A valid consensus of the two estimates, with all the desirable 
ML properties of either, may be obtained by adding the two likelihoods together and 
maximizing their sum.  Conveniently, this will give exactly the same point estimate as 
simply submitting all T−1 first differences to the program as if they were independent.  
The program will return standard errors based on the false assumption that all T−1 
observations are independent, which will be smaller than those obtained using either half 
of the data by a factor of approximately 1/√2, but these may be conservatively corrected 
(if it is desired to use them), simply by multiplying the reported values by √2.  We will 
call these consensus estimates 𝛼� and �̂�#.   
 
 Similarly, the lag 2 first differences are independent modulo 3, so that an ML 
estimate of c2 is valid using every third value, starting with t = 3, 4, or 5.  A consensus 

 
14  See DuMouchel (1975).   
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estimate �̂�$ may be obtained as above simply by submitting all T−2 lag 2 first differences 
as if they were independent, constraining α = 𝛼L as well as β = 0 and μ = 0, and then 
adjusting the standard error up by a factor of √3.15 
 
 Having thus estimated α, cε and cη, βε may be estimated by a univariate search 
over the log likelihood (12), and then examining the profile to ensure that the 
discontinuities are not an issue.  Inference on βε (conditional on the estimated values of 
the other three parameters) may then be performed using the likelihood ratio test in the 
usual manner, provided the null hypothesis is not on the boundary of the parameter space 
[−1, 1].  (See Moran 1971, DuMouchel 1973.)   
 
 Normality may be tested using the kurtosis statistic K.  If an i.i.d. sample of size n 
has a normal distribution with unknown mean and variance to be estimated, the 
normalized K-statistic  
 𝑍R = (𝐾 − 3) �24 𝑛⁄⁄  
is known to be asymptotically distributed N(0, 1).  As noted above, even and odd 
numbered values of Δyt are serially independent, so that either set of first differences 
could be used to compute K and ZK, with n = T/2 or T/2−1.  A consensus of the two K 
and ZK statistics may be found simply by computing K from the full set of first 
differences, but then computing ZK using T/2 (which is asymptotically equivalent to 
T/2−1) as a conservative estimate of the effective independent sample size in place of n. 
 
11.  STOCK RETURNS 
 
 Figure 11 show monthly logarithmic percent returns in excess of the risk-free 1-
month Treasury bill rate on the Center for Research on Security Prices (CRSP) Value-
Weighted stock price index, with dividends, for Jan. 1950 to Dec. 2016.16   While there 
were extreme returns in both directions, October 1987 and October 2008 had particularly 
large negative returns.    
 
   
 

 
15  The characteristic exponent α could be estimated from the lag 2 differences along with c2.  However, the 
lag 2 first differences have an effective independent sample size of approximately T/3, whereas the first 
differences themselves have an effective independent sample size of approximately T/2, and therefore 
provide a superior estimate.  It is therefore preferable to first estimate α from the first differences along 
with c1, and then to estimate c2 with α constrained to this 𝛼M.  
 
16  The CRSP monthly index represents the last trading day of each month, so that no spurious serial 
correlation of returns is introduced, as would be the case if it were the monthly average of daily values. 
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Figure 11 
Monthly logarithmic percent returns on the CRSP Value-Weighted stock price index, 

with dividends, in excess of the 1-month Treasury bill return, for Jan. 1950 to Dec. 2016. 
 
 
 
 
 The benchmark martingale difference model of stock returns assumes that the 
equity premium in excess stock returns is a constant.  However, it is conceivable that the 
observed equity premium in fact varies from decade to decade due to demographic 
changes, changes in investor attitudes toward risk, and/or changes in the tax code.  The 
LLM should be capable of picking up such changes.17   
 
 The first data column of Table 7 shows the kurtosis test for normality of stock 
returns, along with “short-cut” estimates of α, cε, and cη, and a grid search estimate of  βε 

 
17  Most financial returns in fact exhibit volatility clustering and therefore are not independent.  While it is 
feasible to model returns as conditionally stable with GARCH-like time-varying scale (see McCulloch 
1985, Oh 1994, McCulloch and Bidarkota 1998), the present paper assumes for simplicity that errors are 
homoskedastic and serially independent.   
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using N = 10,000 particles.  I.i.d. normality is overwhelmingly rejected, with a 2-tailed p-
value of 1.16 x 10-8.  The estimated stable characteristic exponent α is 1.88.  The 
estimated signal/noise scale ratio cη /cε is 0.302, which is surprisingly high and indicates a 
much stronger departure from pure martingale-difference behavior than was anticipated.  
This finding warrants further investigation that goes beyond the scope of the present 
paper. 
 
 

Table 7 
Normality tests and parameter estimates  

for stock returns, CPI inflation, and Bitcoin returns. 
 

 
Note:  T is the number of monthly observations.  Kurtosis K is computed from first 
differences per text.  Standardized kurtosis ZK is computed with n = T/2 per text.  

Probability value pK is 2-tailed test for normality.  Parameters α, cε, and cη are estimated 
by “shortcut method” per text.  Parameter βε is estimated by grid search of Whisker 

particle filter likelihood with N = 10,000 particles and step size of 0.01.  ESSmin is the 
minimum Effective Sample Size for the whisker particle filter over t = 1, ... T, at the 

estimated value of βε. 
 
 
 

 Figure 12 plots the log likelihood for the stock returns as a function of βε, as 
computed using the whisker particle filter with N = 10,000 particles, in steps of .01 from 
−1 to +1, and conditional on the “short-cut” estimates of α, cε, and cη.  The short vertical 
green line indicates the likelihood-maximizing value of  –0.62. The horizontal red line is 
1.92 = 3.84/2 below the likelihood maximum, so that βε values whose log likelihood lie 
below this line may be rejected at the .05 confidence level by the χ2 Likelihood Ratio test 

 Stocks Inflation Bitcoin 
T 804 709 101 
K 4.36 4.99 6.88 
ZK 5.59 7.66 5.63 
pK 1.16 x 10-8 1.90 x 10-14 1.88 x 10-8 

α 1.88 1.77 1.71 
cε 2.55 0.737 13.0 
cη 0.77 0.749 9.7 

cη /cε 0.302 1.02 0.75 
βε −0.62 +0.57 +1.00 

ESSmin 16.0 39.7 325.5 
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with one degree of freedom.   It may be seen that almost all positive values may be 
rejected, but that symmetry is just on the borderline of acceptability.  Almost all negative 
values are acceptable. 18  On close examination, the blue line is “jittery” because of 
serrations in the simulated log likelihood induced by the particle filter, yet smooth 
enough to ascertain a global maximum near –0.62.    
 
 

 
 

Figure 12 
Maximum likelihood search for stock noise skewness parameter βε.  Blue line is log 

likelihood, conditional on “short-cut” estimates of other stock stable parameters.  Vertical 
green line indicates likelihood-maximizing value of −0.62.   Horizontal red line is 1.92 

below maximized log likelihood, so that LR statistic is 3.84.  

 
18 Moran (1971) notes that the LR test does not have its customary asymptotic normality when the null 
hypothesis is at the boundary of the parameter space, as is the case for b0  = ±1, so that caution must be 
exercised in making claims about these cases.  DuMouchel (1973) observes that when the null is b0  = ±1 or 
a0 = 2, MLE is in fact super-efficient, in that it converges on the true value at a rate faster than n-1/2.  
McCulloch (1997) finds that the LR statistic is informative for the boundary null a0 = 2, but that the 
customary chi-square critical values are too conservative.   
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 Figure 13 plots the median, 50% and 95% credible intervals for the expected 
logarithmic stock excess return, as simulated with the whisker filter with N = 10,000 
particles, θA = 0.25, and equilibration.  In order to concentrate on the financial crisis of 
2008, only Feb. 2004 (month 650) through June 2012 (month 750) are plotted.  Months 
650 through 700 are typical of the portion of the series that is not plotted – the filter 
median is more often positive than not, but zero ordinarily lies within the 95% credible 
interval.  This failure to find significantly positive expected log returns is apparently due 
to the surprisingly high estimated signal/noise ratio, which gives the filter a very short 
memory.  This feature of the data deserves further study.  During and shortly after the 
October 2008 crash (in month 706), the expected log excess return was actually 
significantly negative, again perhaps due to the short memory of the process. 
 
 
 

 
Figure 13 

Whisker filter distribution for expected log excess stock returns for Feb. 2004 (month 
650) through June 2012 (month 750).  Blue stars are observed excess logarithmic returns 

in percent per month.  Heavy red line is posterior median.  Thinner lines are 50% and 
95% credible intervals.  
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 The October 1987 crash (not plotted) was even larger than the October 2008 
crash, and did create a similarly strong spike in the lower 95% CI bound.  However, 
because it was not reinforced with adjacent negative returns, it only barely pulled the 
50% CI into the negative range, and hence, unlike the 2008 crash, did not result in a 
significantly negative expected log excess return at the 95% credible level.  
 
 Even though ESSmin was only 16.0 despite using N = 10,000 particles, the extreme 
particles always had probability less than 0.05, so that the 95% CI bounds were never 
undefined.  This was possible because the addition of “whisker” particles ensures that 
there will be relatively weak particles at each end of the distribution.   
  
12.  INFLATION 
 
 In the case of inflation, the Local Level Model corresponds to the Adaptive 
Expectations (AE) hypothesis of Cagan (1956), as established by Muth (1960).  It is now 
generally recognized that AE is overly simplistic as a model of inflationary expectations:  
Inflation has richer dynamics than implied by the LLM, and perhaps other observable 
variables such as the money supply, unemployment, and/or the Fed’s interest rate targets 
are empirically significant marginal predictors of inflation.  It is anticipated that a future 
multivariate extension of the present study will enable the incorporation such variables.  
Nevertheless, the LLM remains a useful univariate first approximation to the inflation 
process.   
 
 Annualized percent inflation was computed from the logarithm of the seasonally 
adjusted, chain-type Personal Consumption Expenditures (PCE) price index from Feb. 
1959 to Feb. 2018 (709 monthly observations).19   The kurtosis test for normality reported 
in the second data column of Table 7 rejects the null of i.i.d. normality with a 2-sided p-
value of 1.90 x 10-14.  The “short-cut” estimate of α is 1.77.  The estimated signal/noise 
scale ratio of 1.02 is surprisingly high, as it again implies a very short memory to the 
process.   The estimated noise skewness parameter βε is +0.57, indicating that unusually 
high inflation (relative to the expectation) is more likely than comparably low inflation, 
even though the inflation rates are computed logarithmically.     
 
 Figure 14 plots the median and 50% and 95% credible intervals for the whisker 
filter, using N = 10,000 particles, along with the observed annualized monthly PCE 

 
19  The seasonal adjustments in the official data are themselves a set of 12 constrained time-varying 
unobserved state variables that ideally should be estimated simultaneously with the seasonally adjusted 
inflation trend xt as in McCulloch (2005).  For the sake of simplicity, we use the official seasonal 
adjustments, even though these are computed after the fact using subsequent data.     
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inflation (blue stars).  In order to focus in on the financial crisis, the figure is restricted to 
Jan. 2004 (month 540) through May 2012 (month 640).   November 2008 (month 598) 
stands out as an extremely negative observation.      
 
 

  
Figure 14 

Whisker filter estimates of expected annualized percent PCE inflation using parameter 
estimates of Table 7 with N = 10,000 particles.  Detail shown is for Jan. 2004 (month 

540) through May 2012 (month 640).  Red lines indicate the simulated filter median and 
50% and 95% credible intervals.  Blue stars are observed annualized monthly inflation.   

 
 
 Despite the short memory implied by the high estimated signal/noise ratio, 
expected inflation is ordinarily significantly positive up until August of 2008.  After the 
extremely negative observation of November 2008, expected inflation is significantly less 
than −4% per annum, and remains there through December 2008.  Although in my view 
the extreme reaction of the Fed at the time was unwarranted, one can empathize that a 
sense of urgency might have prevailed at the time.    
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 A multivariate model of inflation that is richer than the LLM, e.g. in which xt 

depends on lagged inflation with time-varying parameters as in McCulloch (2005), and 
perhaps also is predicted by other variables, might tell a different story during this 
important episode.   Such a model must await a multivariate extension of the present 
paper. 
 
13.  BITCOIN RETURNS 
 
 Percent logarithmic returns were computed from month-end Bitcoin prices 
obtained from coindesk.com, for December 2010 through May 2019, yielding 101 
returns.  The prices used were weekly averages for the week beginning with the last 
Monday of each month.  These weekly averages largely iron out transitory fluctuations 
that may be an artifact of any thinness of the market.  However, since they are separated 
by more than one week, no spurious serial correlation in the monthly returns is induced 
by the averaging.20   
 
 Parameters for the returns are tabulated in the last column of Table 7.  I.i.d. 
normality may be rejected with a 2-tailed p-value of 1.88 x 10-8.  The short-cut estimate 
of α is 1.71, the lowest of the three series.  The signal/noise scale ratio is 0.75, which 
again is unexpectedly high, implying a very short memory.  The observation error 
skewness estimate is +1.00. 
 
 Figure 15 plots the Bitcoin returns (blue stars), along with the Whisker filter 
median and 50% and 95% credible intervals, using N = 10,000 particles.  Although the 
median expected log return is ordinarily positive, it is significantly positive only briefly, 
in early 2013 (near month 27) and late 2017 (near month 83), and in fact is briefly 
significantly negative in late 2011 (near month 9).21 
 
 Takeaway:  Despite its extraordinarily high average performance, Bitcoin is very 
risky, with an only questionably positive expected log return. 
 
 
 

 
20  The data were first collected from coindesk.com on 2/27/18, and updated 2/6/19 and 5/27/19.  The 
updates revealed that some of the earlier data had been slightly revised, but this effect was negligible.  The 
data begins with Dec. 2010 because prior to that date the price was under $1.00, and hence returns would 
have been very sensitive to rounding error.  Furthermore, the earlier market was likely relatively thin.   
    
21  Figure 15 suggests that there is pronounced volatility clustering in additional to conditional 
leptokurtosis, that could be modeled wither with a GARCH-type model or an additional stochastic volatility 
state variable.   The present paper makes no attempt to model this additional complication.   
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Figure 15 

Monthly percent logarithmic Bitcoin returns (blue stars), together with Whisker filter 
median and 50% and 95% credible intervals. 

 
 
14.  PARTICLE SMOOTHING  
 
 The Whisker particle filter, which simulates the backward-looking “filter” density 
p(xt|Yt), may easily be extended to simulate the backward- and forward-looking 
“smoother” density p(xt|YT), where YT = (y1, y2, ... yT), by means of the two-filter 
smoother introduced by Kitagawa (1987) and reported by Harvey (1990, 162 ff.).  Setting 
Yt:T = (yt, yt+1, ... yT), p(xt | Yt:T) is the backward filter, obtained by running the filter 
backward from time T to time t, and p(xt | Yt+1:T) is the backward predictive density for xt 
given yt+1 through yT, as computed in the course of the backward filter.  The smoother 
may then be computed and simulated in either of two ways.   
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 The first, or “S1,” method computes the smoother at time t from the time t forward 
filter and time t+1 backward filter using 
 p(𝑥!|𝐘P) ∝ 𝑝(𝑥!|𝐘!)𝑝(𝑥!|𝐘!%#:P) 
                        = 𝑝(𝑥!|𝐘!) ∫ g(𝑥!%# − 𝑥!)𝑝(𝑥!%#|𝐘!%#:P)𝑑𝑥!%#.   (17) 
This could be simulated, albeit with O(N2) operations for each time t, with  
 𝑝!,1

7& ∝ 𝑝!,1? 	∑ gb𝑥!%#:P,5@ − 𝑥!,1? c𝑝!%#:P,5@8
56#  ,     (18) 

 𝑥!,17# = 𝑥!,1?  , 
where 𝑝!%#:P,5@  etc. pertains to the resampled reverse filter for xt+1 based on yt+1 through yT.  
However, in the spirit of particle filtering, the expense of this convolution can be reduced 
to O(N) by replacing the sum with one randomly selected element, as follows:  
 𝑝!,1

7& ∝ 𝑝!,1? gb𝑥!,1? − 𝑥!%#:P,5(1)@ c𝑝!%#:P,5(1)@ 	, 
where j(i) is a random permutation of the first N integers. It is preferable to use the 
resampled backward filter particles rather than the raw backward filter particles for this 
purpose, as these will place more appropriate weights on the transition densities.  Also, 
sampling without replacement by means of the permutation j(i) rather than with 
replacement ensures that each resampled backward filter particle will be used exactly 
once for some i. 22 
 
 The second, or “S2,” method instead computes the smoother at time t from the 
time t backward and time t−1 forward filter: 
 p(𝑥!|𝐘P) ∝ 𝑝(𝑥!|𝐘!:P)𝑝(𝑥!|𝐘!"#) 
                        = 𝑝(𝑥!|𝐘!:P) ∫ g(𝑥! − 𝑥!"#)𝑝(𝑥!"#|𝐘!"#)𝑑𝑥!"#,   (19) 
and simulates this with 
  𝑝!,1

7* ∝ 𝑝!:P,1? gb𝑥!:P,1? − 𝑥!"#,T(1)@ c𝑝!"#,T(1)@  , 

 𝑥!,1
7* = 𝑥!:P,1?  , 

where J(i) is a different random permutation of the first N integers. 
 
 Although (17) and (19) are mathematically equivalent, the S1 and S2 smoothers 
differ because they use different sets of ordinates which may result in different Effective 
Sample Sizes, ESS!

7& and ESS!
7*.  If ηt+1 is unusually large, the forward filter and hence S1 

will ordinarily be the more accurate estimate of xt. and will have the higher ESS.  Or, if ηt 
is unusually large, the reverse filter and hence S2 will be better and have the higher ESS.  

 
22  See Fearnhead et al. (2010).  Kantas et al. (2015) note that J. Olsson and J Westerborn have proposed 
instead drawing K elements from the sum in (18), where 1 < K < N for some K that does not increase with 
N.  However, given that the filter has already proxied each propagation convolution with a single, randomly 
chosen element, it is not clear that this would be worth the expense.  If K times more computation is 
warranted, N should simply be replaced with NK.   
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The detailed information in the better estimate may be automatically exploited simply by 
merging the two sets of particles, weighted by their respective ESS: 

 < 𝑥!,17 , 𝑝!,17 >	=	< 𝑥!,1
7& , 𝑝!,1

7& U77"
+&

U77"
+&%U77"

+* >	∪	< 𝑥!,1
7* , 𝑝!,1

7* U77"
+*

U77"
+&%U77"

+* > . 

This gives the smoother 2N particles rather than N, but this is not a great burden, since 
most of the calculations, including any hyperparameter estimation, have already been 
done with N particles.  In any event, the smoother is often of primary importance and 
hence may merit the additional detail. 
 
 The particle smoother proposed here has not yet been implemented, and is left for 
future research. 
 
15.  TIME-VARYING PARAMETER (TVP) SEQUEL 
 
 The Local Level Model can be generalized to a more flexible Time Varying 
Parameter (TVP) model in which an observed variable yt obeys a linear regression, each 
of whose regression coefficients follows a random walk.  When the errors are Gaussian 
and the covariance matrix of the regime shifts is constrained in a certain way, the very 
useful Recursive Least Squares model results, as proposed by Ljung (1992), Sargent 
(1999), Evans and Honkapohja (2001), and McCulloch (2005).   
 
 One purpose of this paper has been to be a prequel to a subsequent study that will 
develop such a TVP model with stable observation errors and regime shifts, as follows:      
 𝑦! = ∑ 𝑏!,5𝑥!,5 + 𝜀!V

56# ,				𝜀!~S(𝛼, 𝛽H , 𝑐H , 0), 
 𝐛! = 𝐛!"# + 𝛈! ,						𝛈!~MV	Elliptical	S(𝛼, 𝐂𝛈,! , 𝟎), 
where the xt,j are exogenous observed regressors, bt = (bt,1, ... bt,k)´ is a vector containing 
the regression coefficients at time t, and ηt = (ηt,1, ... ηt,k)´ is a vector containing the 
shocks to each regression coefficients.  
 
 Multivariate stable distributions can be very complicated, but assuming that the 
contours of the joint distribution are elliptical greatly simplifies the possibilities.  In this 
case, the scales and covariations are determined by a k × k coscale matrix C that 
determines the shape of the ellipses much like the covariance matrix in the Gaussian 
special case.23  In the spirit of Recursive Least Squares, it will be assumed that Cη,t is 
proportional to the uncertainty in the estimate of bt-1, as measured by the covariance of 
the time t−1 particle filter.  Elliptical stable distributions are necessarily symmetrical, but 
this does not prevent the observation errors from being skewed.   
 

 
23  See Nolan (2006).   
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 In his book Fractals, Benoît Mandelbrot (1977: 131-42) refers to such a 
multivariate random walk with elliptical stable disturbances as a “Levy Flight.”  A 
simulation of a bivariate Levy Flight with C = I, α = 1.7, and T = 1000 is depicted in 
Figure 16.  Mandelbrot erroneously states that such a process would have step lengths 
that are stably distributed.  In fact, it must be the marginals in each direction that are 
stably distributed in order for it to be a self-similar “fractal,” in his terminology.  
 
 
 
 

 
 

Figure 16 
Isotropic Levy Flight of length 1000 with C = I and α = 1.7.  The color axis indicates 

time, scaled to [0, 1]. 
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16.  CONCLUSION 
 
 A particle filter is used to estimate the unobserved state variable in the Local 
Level Model with infinite variance stable disturbances.  The proposed Whisker Filter 
method, which adds minimal-weight particles outside the range of the received particle 
filter when resampling, robustly detects large regime shifts without being unduly 
distracted by extreme observation errors or requiring an excessive number of particles.  
While all methods considered consistently estimate the filter distribution, the Whisker 
Filter gives the best results in terms of Mean Absolute Error with a moderate number of 
particles.  The proposed method is suitable for use with other heavy-tailed distributions, 
such as Student’s t.   
 
 The paper employs rank-stratified sampling in the Initialization, Resampling and 
Propagation steps in order to make the method as deterministic as possible.  Although the 
Propagation step requires some randomness, this is minimized by using a random 
permutation of a stratified sample from the signal distribution.  A Mixture Kalman filter 
as proposed by Chen and Liu (2000), using the skew-stable Poisson series simulation of 
Lemke, Riabiz and Godsill (2015), was implemented, but was much slower, often failed, 
and had no clear advantage over the Whisker Filter in terms of MAE, even when 
modified by including more high-variance components as governed by a Beta 
distribution. 
 
 Excess stock returns, inflation, and Bitcoin returns overwhelmingly reject i.i.d. 
normality (stable α = 2.00), and yield stable α estimates of 1.88, 1.77, and 1.71, 
respectively.  The estimated signal/noise ratios were unexpectedly high in all three cases.   
 
 It is anticipated that the methods developed in the present paper will be adapted in 
future research to smoothing, as well as to richer, multivariate state-space models.   
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Appendix: The Mixture Kalman Filter 
 
 A Gaussian mixture representation of a distribution H(x), h(x) is a set of N triples 
<µi, vi, pi> = {(µi, vi, pi), i = 1, ... N}, each giving the mean, variance, and probability 
weight of a Gaussian distribution, such that  
  H(𝑥) ≈ ∑ 𝑝1N(𝑥;	𝜇1 , 𝑣1),8

16#  
h(𝑥) ≈ ∑ 𝑝1n(𝑥;	𝜇1 , 𝑣1)8

16# , 
where N(x; µ, v) and n(x; µ, v) are the normal CDF and PDF with mean µ and variance v. 
 
 According to a 1955 theorem of S. Bochner (see Samorodnitsky and Taqqu 1994, 
theorem 1.3.1 with their a¢ = 2), if  

  𝐴	~	S ¦a
$
, 1, cos Dpa

X
H
$ a⁄

, 0§, 
and, independently, 
  W ~ N(0, 1), 
then 
  𝑋 = 	 (2𝐴)# $⁄ 𝑊	~	S(a, 0,1,0).   

It follows that a stratified N-component Gaussian mixture representation of the 
symmetric stable signal distribution g(𝜂) = s-,0,Y,,0(𝜂) may be obtained by setting   
  µ1

Q = 0, 

  𝑣1
h = 2	𝑐Q$	S"# ¦

1"0.;
8

; a
$
, 1, cos Dpa

X
H
$ a⁄

, 0§, 

  𝑝1
Q = 1/𝑁. 

 
  Unfortunately, the Bochner theorem can only be used to generate symmetric 
stable random variables as mixtures of normals.  However, following LRG (2015) with 
some slight rearrangement, an approximate N-component Gaussian mixture 
representation of f(e) = s-,/-,Y-,0(𝜀) may be obtained, for a > 1, by setting  
  𝜇1H =	𝑐H 	𝜇Z	b𝑚1 +	𝑅1,#c, 
  𝑣1H =	𝑐H$	𝜎[$ 	b𝑠1 +	𝑅1,$c, 
  𝑝1H = 1/𝑁, 
where  

𝑚1 =	∑ 𝛤1,5
"#/-\$

56# , 
𝑠1 =	∑ 𝛤1,5

"$/-\$
56# , 

Gi,j, j = 1, … Mi is a truncated Poisson series (the same for si and mi, but drawn 
independently for each i), Mi is the largest j for which Gi,j is less than some threshold g,  

  𝐑1 = ¦
𝑅1,#
𝑅1,$

§~𝑁(𝛍𝐑, 𝚺𝐑)  (independently of Gi,j), 

  𝛍𝐑 =	²
-

#"-
𝑔
.%&
.

-
$"-

𝑔
.%*
.

´, 
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  𝚺𝐑 =	²
-

$"-
𝑔
.%*
.

-
4"-

𝑔
.%/
.

-
4"-

𝑔
.%/
.

-
X"-

𝑔
.%0
.

´, 

and for |be| < 1, 

  𝜎Z =	D ^.
U|Z∗|.H

#/-
, 

  𝜇Z =	𝜎Z. 	𝜇∗, 
where, G(x) here being the gamma function,  
  𝐶- =	

#"-

a($"-)bcde2.* f
 , 

and µ* is implicitly determined from be by numerically inverting 
  𝛽H =	

UJ|Z∗|.dghi(Z∗)L
U(|Z∗|.)

 , 
where W* ~ N(µ*, 1).  We found that the above LRG approximation with N = 1000 and 
their suggested value of g = 100 gives a good visual match to S(a, be, ce, 0), with assorted 
parameter values.  (Our g is LRG’s c, but we reserve c for the stable scale parameter.) 
 
 For |be| =1, we instead must use the limiting values 
  𝜇Z = 	sign(𝛽j)	𝐶-#/- , 

𝜎Z = 	0, 
which effectively turn the Gaussian mixture representation for e into an unstratified 
particle representation. 
  
 Our application of the Mixture Kalman Filter then proceeds as follows: 
 
 Preliminary calculations: Compute 𝜇Z , 𝜎Z , and	𝑣1

Q as above. 
 
 Initialization (I): Draw 𝜇#,1H  and 𝑣#,1H  by the LRG method as above and, using a 
uniform prior for 𝑥#, set t = 1 and the initial filter (F) components to 
  𝜇#,1? =	𝑦# − 𝜇#,1H , 
  𝑣#,1? =	𝑣#,1H , 
  𝑝#,1? = 1/𝑁. 
The minus sign on 𝜇#,1H  is required because the skewness of the likelihood f(xt - yt) as a 
function of xt is opposite that of the measurement error density f(yt - xt) as a function of 
yt. 
 
 Resampling (R):  Draw an equal-weighted stratified sample 𝜇!,1@ , 𝑣!,1@  from the time 
t filter components, without sorting or interpolating, and set  
  𝑝!,1@ = 1/𝑁. 
 
 Propagation (P):  Draw a random permutation Jt(i) of the first N integers and 
simulate the predictive (P) density for yt+1 conditional on observations through yt with 
components 
  𝜇!,1A =	𝜇!,1@ , 
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  𝑣!,1A =	𝑣!,1@ +	𝑣C"(1)
Q , 

  𝑝!,1A = 1/𝑁. 
 
 Updating (U):  Draw a new set of observation error components 𝜇!,1H  and 𝑣!,1H  as 
above with 𝑝!,1H = 1/𝑁	and, for |𝛽H| ≠ 1, perform a Kalman filter update pairing each 
predictive density with its randomly determined observation density by setting  
  𝑣!%#,1? = 	1/b1 𝑣!,1A⁄ + 1 𝑣!,1H⁄ c, 
  𝜇!%#,1? =	𝑣!%#,1? 	b𝜇!,1A 𝑣!,1A¶ + b𝑦!%# −	𝜇!,1H c 𝑣!,1H¶ c, 
  𝑝!%#,1? ∝ 	𝑝!,1A 	𝑝!,1H 	nb𝑦!%# − 𝜇!,1H ; 	𝜇!,1A , 	𝑣!,1A + 𝑣!,1H c,  
and normalizing the weights to sum to unity.  (The two probability weights in the last 
expression are computationally redundant, but are included here for the sake of 
generality.)   
 
 Iteration:  Replace t by t+1 and repeat steps P and U until t > T. 
 
 In the limits |𝛽H| = 1, the Update step becomes  
  𝜇!%#,1? =	𝑦!%# −	𝜇!,1H , 
  𝑣!%#,1? = 	0, 
  𝑝!%#,1? ∝ 	𝑝!,1A 	𝑝!,1H 	nb𝑦!%# − 𝜇!,1H ; 	𝜇!,1A , 	𝑣!,1A c. 
This effectively turns the filter distribution into a step function, as if we had used a 
particle filter.  However, the outcome will be noisier than any of the particle filters 
considered because the likelihood of each predictive particle is being simulated randomly 
rather than computed exactly.   
 
 Our simulations show that the above standard Mixture Kalman Filter occasionally 
fails when the simulated data contains an extreme outlier that happens to be far outside 
the range of the variances in the simulated predictive and observation distributions.  I am 
grateful to Simon Godsill for noting that these computational failures can be easily 
avoided by first computing the logarithm of 𝑝!%#,1?  and then subtracting out the maximum 
of these logarithms before exponentiating and normalizing.   
 

In order to avoid these perhaps ill-conditioned cases, we also modified the 
standard MKF to artificially add high-variance but low-probability signal components 
governed by a Beta(a, b) distribution with a = 1 and b = 0.5, to obtain the “Beta Mixture 
Kalman Filter” in the tables, as follows.  Define  
 𝑃1OkDl = B#,0.;"# D 1

8
H ,															𝑖 = 0,…	N, 

 𝑝1OkDl = 𝑃1OkDl − 𝑃1"#OkDl,								𝑖 = 1,…𝑁, 

 𝑄1OkDl = 𝑃1OkDl −
I$
3456

$
,								𝑖 = 1,…𝑁, 

where Bm,n(𝑥) is the CDF of the Beta(a, b) distribution.  For the Propagation step, set  

 𝑣1
h = 2	𝑐Q$	S"# ¦𝑄1OkDl;

a
$
, 1, cos Dpa

X
H
$ a⁄

, 0§, 

 𝑝1
Q = 𝑝1OkDl. 
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In the Resampling step, first sort the components of the time t Filter in increasing order 
by variance.  Then draw rank-stratified 𝑣!,1@  from the step function defined by the sorted 
filter variances at probabilities 𝑄1OkDl, without interpolating or extrapolating.  Set the 𝜇!,1@  
equal to the corresponding filter means, and set       
 𝑝1@ = 𝑝1OkDl. 
 
 Ideally, we would like to use a similar procedure to generate high-variance, low-
probability observation error components in the Update step, but this is not possible with 
the LRG method.  The Beta parameter choice a = 1 is natural, since we only want to 
dilate the distribution of variances at the upper end.  The choice b = 0.5 is arbitrary, but 
robustly eliminates the underflow cases and substantially improves the MAE with only a 
small loss of ESS. 
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