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Abstract

We construct a simple representative agent model to provide a theoretical framework for the log-
stable option pricing model. We also implement a new parametric method for estimating the risk neutral
measure (RNM) using a generalized two-factor log-stable option pricing model. Under the generalized
two-factor log-stable uncertainty assumption, the RNM for the log of price is a convolution of two ex-
ponentially tilted stable distributions. Since the RNM for generalized two-factor log-stable uncertainty
is expressed in terms of its Fourier Transform, we introduce a simple extension of the Fast Fourier
Transform inversion procedure in order to reduce computational errors in option pricing. The general-
ized two-factor log-stable RNM has a very flexible parametric form for approximating other probability
distributions. Thus, this model provides a sufficiently accurate tool for estimating the RNM from the
observed option prices even if the log-stable assumption might not be satisfied. We estimate the RNM
for the S&P 500 index options and find that the generalized two-factor log-stable model gives better
performance than the Black-Scholes model, the finite moment log-stable model (Carr and Wu, 2003),
and the orthogonal log-stable model (McCulloch, 2003) in fitting the observed option prices.
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1 Introduction

Derivative prices provide a valuable source of information for measuring market participants’ perception

of future development of underlying asset prices. Particularly, cross section data on options, all of which

expire at the same time but have different strike prices, contain rich information about the underlying asset

price distribution in the future. Call (put) options are only valuable to the extent that there is a chance that

the underlying asset will be worth more (less) than the strike price so that the option comes to be exercised.

Thus, the market prices of the options provide information about the probability that market attaches to an

asset being within a range of possible prices at maturity date.

The option values are determined by the investors’ risk preference and the statistical probability distri-

bution of the underlying asset price, the so-called Frequency (probability) Measure (FM).1 Alternatively,

the value of option may be evaluated as a discounted expected value of the future payoffs of the option

under the risk-adjusted distribution of the underlying asset price, the so-called Risk-Neutral (probability)

Measure (RNM), as in the risk-neutral valuation of Ross (1976) and Cox and Ross (1976). The RNM allows

us to price any derivative of the particular underlying asset with the same time to maturity by a present

value of their expected payoffs in an arbitrage-free market. Inversely, the implied RNM may be extracted

from the derivative prices by reversing the process of obtaining prices from pricing models. In a complete

arbitrage-free market, a unique RNM can be recovered from a complete set of European option prices using

the relationship proposed in Ross (1976) and Breeden and Litzenberger (1978).

The famous Black-Scholes (BS) option pricing model (1973) provides a market’s ex-ante estimate of the

underlying asset’s price distribution at maturity under the log-normal assumption. The lognormal assump-

tion suggests that implied volatilities2 should be constant for all strike prices because only one volatility

parameter governs the underlying stochastic process on which all options are priced. However, practitioners

and researchers have noted that option prices tend to systematically violate the constant volatility assump-

tion in the BS model. Rubinstein (1985) documented the first such systematic violations of BS model prices.

The typical market volatilities implied from option prices often have an asymmetric U-shaped structure with

1The FM governs the empirically observable distribution of underlying asset prices. It is also called the physical probability
measure, the objective probability measure, or the real world probability measure.

2Among the parameters entering the Black-Scholes formula only the volatility cannot be observed. However, using an observed
option price an implied volatility can be computed by inverting the option pricing formula. Often the implied volatility is called the
Black-Scholes implied volatility.
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respect to strike prices, commonly referred to as the ”volatility smile” or ”volatility smirk.”3 The observed

deviations of implied volatilities from the Black-Scholes assumption provide some information about the

shape of the RNM density function implied by option prices. The volatility smirk suggests that the log

returns of the underlying asset at maturity should have a skewed and leptokurtic distribution rather than a

normal distribution. Thus, it is necessary to make an alternative assumption for the asset’s return distribu-

tion which is consistent with the implied volatility structure. To relax the log-normal assumption of the BS

model, many option pricing models have been developed by introducing additional factors such as (i) the

stochastic interest rate [Amin and Jarrow (1992)]; (ii) the jump-diffusion [Bates (1991)]; (iii) the stochastic

volatility [Heston (1993)]; (iv) the stochastic volatility and stochastic interest rate [Bakshi and Chen (1997)];

(v) jump diffusion with the stochastic volatility [Bates (1996)].

However, the Generalized Central Limit Theorem (GCLT)4 provides support for stable distributions as

a financial asset’s log return process since financial asset returns may be considered as the multiplicatively

cumulative outcome of many stochastic events. Furthermore, stable distributions can easily accommodate

heavy tails and skewness of asset returns, which are commonly observed in the financial data. It is therefore

reasonable to assume that log asset returns are governed by a stable distribution. In turn, asset prices them-

selves follow a log-stable distribution. The normal or Gaussian distribution is the most familiar member and

the only one with finite variance of the stable class, but inappropriate for modeling extreme events because

the probability of a substantial change is considerably smaller than the frequency observed in financial asset

returns. In addition, observed asset returns are often too skewed to be normal as mentioned above. Thus,

the non-Gaussian stable distributions are preferable for modeling log returns of financial assets.

In the early 1960s the asset pricing models driven by log-stable distributions had already been proposed

by Fama (1963), and Mandelbrot and Taylor (1967) as an alternative to the log-normal assumption, but

the fact that expected payoffs on assets and call options are infinite under most log-stable distributions

led both Paul Samuelson (as quoted by Smith 1976) and Robert Merton (1976) to conjecture that assets

and derivatives could not be reasonably priced under these distributions, despite their attractive feature as

3Before 1987, the implied volatility of the US equity index options, as a function of strike for a certain maturity, behaves like
a symmetric smiled curve. The phenomenon is called the implied volatility smile. After the market crash in 1987, the implied
volatility as a function of strike price is skewed towards the left. The phenomenon is regarded as implied volatility smirk.

4According to the Generalized Central Limit Theorem, if the sum of a large number of identically and independently distributed
(IID) random variables has a non-degenerate limiting distribution after appropriate scaling and shifting, the limiting distribution
must be a member of the stable class. See Zolotarev (1986).
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limiting distributions under the Generalized Central Limit Theorem. These concerns of Samuelson and

Merton come from the misunderstanding about the shape of the RNM. The RNM corresponding to a log-

stable FM is not a simple location shift of the FM. Instead, the RNM in general has a different shape with

finite moments, and leads to reasonable asset and option prices.

The option pricing model with log-stable distributions was first proposed by McCulloch (1978, 1985,

1987, 1996) using a utility maximization setting with the orthogonal log-stable uncertainty assumption.5

Janicki et al. (1997), Popova and Ritchken (1998), and Hurst et al. (1999) have developed option pric-

ing models under the symmetric log-stable assumption. Carr and Wu (2003) proposes the finite moment

log-stable (FMLS) option pricing model by making the very restrictive assumption that the RNM for log

prices have maximally negative skewness6, which is a parametric special case of the orthogonal log-stable

assumption. McCulloch (2003) reformulated the orthogonal log-stable option pricing model in the RNM

context and showed how the RNM can be derived from the underlying distribution of marginal utilities in

a simple representative agent model. The orthogonal log-stable uncertainty assumption allows the RNM

of log-stable returns to be the convolution of two densities: one is a maximally negatively skewed stable

density, and the other is an exponentially tilted maximally positively skewed stable density. However, the

orthogonal assumption is too restrictive for the RNM to fit option prices observed in the markets, which

makes it inappropriate to estimate the RNM from observed option prices.

In this paper, we construct the numeraire and asset choice model in an Arrow-Debreu world to provide a

theoretical framework for the log-stable option pricing model. We also introduce the generalized two-factor

log-stable option pricing model by relaxing the orthogonal assumption. The orthogonal assumption can be

generalized by introducing two factors which are independent maximally negatively skewed standard stable

variates and affect both the log marginal utility of numeraire and the log marginal utility of asset. This

assumption allows the log marginal utilities to be dependent upon each other and also provides a flexible

RNM probability distribution function, which is the convolution of two exponentially tilted stable distri-

butions. Furthermore, since the generalized two-factor stable RNM is sufficiently flexible to fit observed

option prices, the generalized two-factor log-stable option pricing model provides a new parametric method
5It is assumed that the marginal utilities of numeraire and asset follow a log-stable distribution with maximum negative skew-

ness, respectively, and are also independently distributed so that it is called the orthogonal log-stable uncertainty assumption.

6They assume the max-negative skewness in order to give the returns themselves finite moments. They also incorporate max-
negative skewness directly into the stable distribution describing the RNM of the underlying asset without assumptions on the
frequency measure (FM).
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for estimating the RNM from a cross-section of option price data.

Since there are no known closed form expressions for general stable densities, we numerically eval-

uate log-stable options from the characteristic function (CF) by modifying the inverse Fourier Transform

approach of Carr and Madan (1999). This paper also introduces a simple extension of the Fast Fourier

Transform inversion procedure in order to reduce computational errors.

To illustrate the empirical performance of the generalized two-factor log-stable model, we estimate the

RNM from observed S&P 500 index option prices. We then conduct model specification tests and compare

the fitting performance of four models: the BS log-normal model, the finite moment log-stable model, the

orthogonal log-stable model, and the generalized two-factor log-stable model. We evaluate the models on

the basis of the goodness-of-fit and find that the generalized two-factor log-stable model outperforms the

others.

The rest of the paper is organized as follows. Section 2.2 discusses the theoretical relationship between

option prices and the RNM. Section 2.3 presents a simple general equilibrium model for the log-stable

option pricing by constructing a numeraire and asset choice problem in the Arrow-Debreu world. Section 2.4

introduces the generalized two-factor log-stable option pricing model. In Section 2.5 we estimate the RNM

from S&P 500 index option prices and compare the performance of the models. Section 2.6 concludes.

2 Option prices and the RNM

The fundamental building block in modern financial economic theory is a contingent claim. The con-

tingent claim is an asset or security whose return depends on the state of nature at a point in the future. An

option is such a contingent claim because the payoff of the option depends on the price of the underlying

asset at maturity date. The price of the option therefore contains information about the market participants’

probability assessment of the outcome of the underlying asset price at the future maturity date. This is the

basic idea behind the RNM estimation from option prices.

A particular simple and important example of the contingent claim is the Arrow-Debreu security, which

pays one unit in one specific state of nature and nothing in other state. For each state, the prices of Arrow-

Debreu securities, the so-called state-prices, are proportional to the RNM probability densities for the real-

ization of the state. In a continuum of states the state prices thus are proportional with the continuous RNM
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probability density function (PDF).7 Since the state prices are determined by the combination of investors’

preferences, budget constraints, information structures, and the imposition of market-clearing conditions,

i.e., general equilibrium, the RNM contains additional information than the statistical probability measure

(FM).

A number of estimation methods have been developed to back out the RNM from option prices based

on seminal work by Ross (1976), Cox and Ross (1976), and Breeden and Litzenberger (1978). Ross (1976)

showed that a portfolio8 of European call-options can be used to construct synthetic Arrow-Debreu secu-

rities, thereby establishing a relation between option prices and the RNM. By ruling out arbitrage possi-

bilities, Cox and Ross (1976) showed that options in general, independently of investors’ risk preferences,

can be priced as if investors were risk neutral.9 Consider a general European call option whose payoff is

max(S T − K), where S T is the value of an underlying asset on maturity date T , and K is the strike price.

In a complete arbitrage-free market, the price of a European call option C(K) can then be computed as the

discounted value of the option’s expected payoff under the RNM. Formally,

C(K) = e−r f T EQ [max(S T − K, 0)]

= e−r f T
∫ ∞

K
(S T − K) r(S T ) dS T , (1)

where r f is the risk free interest rate, r(S T ) is the RNM PDF, and EQ is the conditional expectation on time

0 information under the RNM. As shown by Breeden and Litzenberger (1978), the RNM density r(S T ) can

be isolated by differentiating (1) twice, yielding10

r(S T ) = er f T ∂
2C(K)
∂K2

∣∣∣∣∣∣
K=S T

. (2)

7By construction, the RNMs have a probability-like interpretation, which are nonnegative and integrating to unity. For this
reason the RNM density is sometimes called the risk-neutral probability density (RND).

8These portfolios are butterfly spreads that are composed of two long and two short call options. The strike price of both short
calls is halfway in between the strike prices of the two long call options. In the limit as the difference between the strike prices goes
to zero the butterfly spread’s payoff becomes a Dirac-Delta function, e.g. Merton (1999).

9However, it does not mean that agents are assumed to be risk neutral. We are not assuming that investors are actually risk-
neutral and risky assets are actually expected to earn the risk-free rate of return.

10By similar reasoning, the cumulative distribution function (CDF) can be obtained by differentiating a single time. This tech-
nique is used by Neuhaus (1995).
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Equation (2) states that the RNM is proportional to the second derivative of the call pricing function with

respect to the strike price.

Since the RNM might embody important information about market participants’ expectations concern-

ing prices of the underlying asset in the future, methods have been developed to estimate the RNM PDF

from observed option prices. As pointed out in Chang and Melick (1999), Equation (1) and (2) provide two

different approaches for estimating the RNMs from observed option prices. The methods based on Equation

(1) make assumptions about the form or family of the RNM for evaluating the integral in (1) and then typ-

ically use a non-linear optimization method to estimate the parameters of the RNM that minimize pricing

errors, which are differences between the predicted option prices and the observed option prices. On the

other hand, the methods based on Equation (2) use a variety of means to generate the call option price func-

tion C(K) and then differentiate the function (either numerically or analytically) to obtain the RNM PDF.

Computing the RNM by (2) requires call prices being available for continuous strike prices, but in reality

just a few discretely spaced strike prices are available. These methods therefore entail directly or indirectly

the construction of a continuous option pricing function from observed prices.

In this paper, we follow the first approach to estimate the RNM by making a parametric assumption that

the log marginal utilities of numeraire and asset are affected by two independent standard stable variates.

3 State Prices, Pricing Kernels and the RNM

In this section, we construct the Numeraire and Asset Choice Model in the Arrow-Debreu general equi-

librium economy to provide a theoretical framework for the relationship between the state prices, the pricing

kernels, and the RNM.

3.1 Numeraire and Asset Choice Model

The fundamental investment-selection problem for an individual is to determine the optimal allocation

of his/her wealth among the available investment opportunities. Under the expected utility maximization

paradigm, each individual’s consumption and investment decision is characterized as if he/she determines

the probabilities of possible asset pay-offs, assigns a utility index to each possible consumption outcome,

and chooses the consumption and investment policy to maximize the expected value of the index.
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Consider a representative agent model in the Arrow-Debreu world, in which only a single consump-

tion good N (numeraire) and a single underlying asset A exist. We assume that the utility function of the

representative agent is random, given by:

U s(N, A)

with random marginal utility of consumption U s
N and random marginal utility of asset U s

A, where s is a state

variable which represents a state of random utility function.11

Let S T (s), which is affected by the state variable s, be the asset price at future time T and introduce

Arrow-Debreu securities which pay one unit of numeraire in specified states, S T (s) ∈ [x, x + dx), and no

payout in other states, S T (s) < [x, x + dx), with unconditional payment of p(x)dx unit of numeraire to be

made at present time 0. The price of the Arrow-Debreu security p(x)dx is called the state price, which can

be thought of as the insurance premium that the agent is prepared to pay in order for him/her to enjoy one

unit of consumption if S T (s) ∈ [x, x + dx).

We assume that the representative agent receives one unit of both numeraire and asset as endowment;

makes forward contracts on the asset at the forward price F; and buys/sells the Arrow-Debreu securities

prior to the realization of a state s of the random utility function. The representative agent then buys/sells

the asset, and consumes the numeraire after the realization of a state s.

Thus, the representative agent faces a consumption-asset choice problem as followings:12

max
{N(s),A(s),B,G,Q(x)}s∈Ω,x∈[0,∞]

EU(N, A) ≡
∫
Ω

U
(
N(s), A(s)

)
ω(s)ds

s.t. 1 = N0 +

∫ ∞

0
p(x)(B + Q(x))dx

N0 + B + S T (s) (1 − A(s)) + (S T (s) − F) G + 1S T (s)∈[x,x+dx)Q(x) = N(s), ∀s,

where s is the state of the random utility function, s ∈ Ω; N(s) is the consumption (numeraire); A(s) is

the amount of asset holding;13 S T (s) is the spot price of the asset; ω(s) is the density of the state variable

11In the analysis of preference for flexibility (Kreps (1979), Dekel, Lipman and Rustichini’s (2001)) the realization of the agent’s
random utility function corresponds to the realization of his subjective (emotional) state.

12For brevity the superscripts on the utility function U s(N, A) have been suppressed.

13Here, we assume no divdend for the underlying asset. Even if we introduced the dividend, the results would be same.
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s, which is conditional on time 0 information; N0 is the amount of numeraire holding before the realization

of the state; B is the amount of bond holding; 1S T (s)∈[x,x+dx) is the payoff of the A − D security (1 if S T (s) ∈

[x, x + dx), 0 otherwise); p(x)dx is the state price of A − D security; Q(x) is the amount of A − D security

holding; F is the forward price of the asset; and G is the amount of forward contracts14 on the asset. Asset

prices, forward prices, state prices, pricing kernels, and the RNM can be easily derived from the first order

conditions for the representative agent problem.

The asset price S T at future time T may be expressed as the ratio of the marginal utilities:

S T =
UA

UN
, (3)

where UN is the random future marginal utility of the numeraire in which the asset is priced, and UA is the

random future marginal utility of the asset itself.

On the other hand, the forward price F at present time 0, which is the numeraire price to be paid at time

T for a contract to deliver 1 unit of the asset at future time T , may be written as the ratio of the expected

marginal utilities:

F =

∫
Ω

UAω(s)ds∫
Ω

UNω(s)ds
=

EUA

EUN
. (4)

The state price p(x)dx, which is the unconditional payment of p(x)dx units of numeraire to be made at

time 0 for an Arrow-Debreu security which pays 1 if S T (s) ∈ [x, x + dx), otherwise 0, can be decomposed

in the following way:

p(x)dx = m(x) · f (x)dx, (5)

where f (x)dx is the probability of S T (s) ∈ [x, x + dx), i.e., the FM probability, while m(x) is the price that

we would pay to enjoy 1 unit of numeraire at time T under the condition that we know that future’s state is

going to be S T (s) ∈ [x, x + dx).15 We call m(x) the pricing kernel, which is a stochastic discount factor for

the asset pricing formula.

14The forward contract is an contract between two parties in which the buyer agrees to pay the seller unconditional payment of
F units of numeraire, in exchange for 1 unit of the asset at future time T .

15It is very important to note that although the agent defines m(x) as if she knew S T , it will not be equal to the price of the bond.
This is because different states imply different effects on his/her utility.
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Since the first order conditions imply that the state price is

p(x)dx =

∫ ∞

0
p(x)dx ·

∫
Ω

1S T (s)∈[x,x+dx) UN
ω(s)
f (x) ds∫

Ω
UN ω(s)ds

f (x)dx

=
1

R f

E(UN |UA/UN = x)
EUN

f (x)dx,

where R f (= er f T )16 is the gross risk-free interest rate to time T , the pricing kernel m(x) is taken to be:

m(x) =
p(x)dx
f (x)dx

=
1

R f

E(UN |UA/UN = x)
EUN

. (6)

Equation (6) shows how the preferences define the pricing kernel, translating the state changes into changes

in the MRS between conditional and unconditional expected marginal utilities17 of consumption of the

representative agent.

Consider a European call option that has state dependent cash flows max(x − K, 0) when S T (s) ∈ [x, x +

dx). The price of this call option C(K) may be determined by the state prices and the possible cash flows:

C(K) =
∫ ∞

0
max(x − K, 0) p(x) dx. (7)

Substituting (5) into (7), we have

C(K) =
∫ ∞

0
m(x) max(x − K, 0) f (x) dx, (8)

= E[m(x) max(x − K, 0)]

where E is the conditional expectation on time 0 information under the FM f (x). Equation (8) implies

that the option price should equal the expected discounted value of the option’s payoff, using the investor’s

stochastic marginal utility to discount the payoff.
16In the Arrow-Debreu economy, the bond price is determined by the sum of state prices:

1
R f

= e−r f T =

∫ ∞

0
p(x)dx.

17Rigorously, the unconditional expected marginal utility, EUN , is a conditional expectation based on information at time 0. On
the other hand, the conditional expected marginal utility, E(UN |UA/UN = x), is a conditional expectation on time 0 information and
the fact that the asset price is going to be x, S T (s) ∈ [x, x + dx).
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Let r(x) be the density of the RNM at time 0 for state-contingent claims at time T . By definition of the

RNM,

C(K) =
1

R f

∫ ∞

0
max(x − K, 0) r(x) dx (9)

=
1

R f
EQ[max(x − K, 0)]

where EQ is the conditional expectation on time 0 information under the RNM r(x). Combining (6), (8) and

(9), we finally get the RNM PDF:

r(x) = R f p(x) = R f m(x) f (x)

=
E(UN |UA/UN = x)

EUN
f (x). (10)

Equation (10) states that the RNM is simply the FM, adjusted by the risk-free interest rate and the pricing

kernel.

Further, combining (3), (4) and (10) yields the mean-forward price equality condition (i.e., the mean of

the risk neutral distribution should equal the currently observed forward price of the underlying asset):

F =
EUA

EUN
=

∫ ∞

0
x r(x) dx. (11)

3.2 FM and RNM under Random Future Marginal Utility

To derive the RNM from the FM and pricing kernel, we start from the joint distributions of the random

future marginal utilities UN and UA instead of assuming the random utility function U s(N, A) explicitly.

Let g(UN ,UA) be the joint PDF of UN and UA conditional on information at present time 0. Equation

(3) implies that the FM cumulative distribution function (CDF) of S T is

F(x) = Pr(S T ≤ x) = Pr(UA ≤ xUN)

=

∫ ∞

0

∫ xUN

0
g(UN ,UA) dUAdUN .
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Therefore, the FM probability density function (PDF) for S T is

f (x) =
∫ ∞

0
UN g(UN ,UA) dUN

=
1
x

∫ ∞

−∞

h(vN , vN + log x) dvN ,

where h(vN , vA) = UNUA g(UN ,UA) is the joint PDF of vN = log UN and vA = log UA.

The FM, in terms of the PDF for log S T , is then

ϕ(z) = ez f (ez)

=

∫ ∞

−∞

h(vN , vN + z) dvN ,

where z ≡ log x . Since

E(UN |UA/UN = x) = E(evN |vA = vN + log x)

=

∫ ∞
−∞

evN h(vN , vN + log x) dvN∫ ∞
−∞

h(vN , vN + log x) dvN
,

Equation (10) follows that

r(x) =
E(UN |UA/UN = x)

EUN
f (x)

=
1

xEUN

∫ ∞

−∞

evN h(vN , vN + log x) dvN .

The RNM PDF for the log of price is then

q(z) = ez r(ez)

=
1

EUN

∫ ∞

−∞

evN h(vN , vN + z) dvN . (12)
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Figure 1: Illustrations of Stable Distributions with Different Parameter Values

4 Generalized Two-Factor Log-Stable Option Pricing Model

To derive a generalized two-factor log-stable RNM PDF, we rely on basic properties of stable distribu-

tions. In this section, we first present a brief review of the basic properties of stable distributions, which are

essential to construct the log-stable option pricing model.

4.1 Basic Properties of Stable Distributions

Stable distributions18 are a rich class of probability distributions that allow skewness and heavy tails and

have many interesting mathematical properties. According to the Generalized Central Limit Theorem, if

the sum of a large number of i.i.d. random variates has a limiting distribution after appropriate shifting and

scaling, the limiting distribution must be a member of the stable class. A random variable X is stable if for

X1 and X2 independent copies of X and any positive constants a and b,

a X1 + b X2
d
= c X + d (13)

holds for some positive c and some d ∈ R , where the symbol d
= means equality in distribution, i.e.,

both expressions have the same probability law. Equation (13) implies that the shape of the distribution is

preserved up to scale and shift under addition.

Stable distributions S (x;α, β, c, δ) are determined by four parameters: the characteristic exponent α ∈

18The stable distribution was developed by Paul Lévy, so it is also called the Lévy skew alpha-stable distribution.
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(0, 2], the skewness parameter β ∈ [−1, 1], the scale parameter c ∈ (0,∞), and the location parameter

δ ∈ (−∞,∞). If X has a distribution S (x;α, β, c, δ), we write X ∼ S (x;α, β, c, δ) and use s(x;α, β, c, δ) for

the corresponding densities.

The characteristic exponent governs the tail behavior and indicates the degree of leptokurtosis. When

α = 2, its maximum permissible value, the normal distribution results, with variance 2c2. For α < 2,

the population variance is infinite. When α > 1, the mean of the distribution E(X) is δ. For α ≤ 1, the

mean is undefined. The skewness parameter β is 0 when the distribution is symmetrical, positive when the

distribution is skewed to the right, and negative when the distribution is skewed to the left. As α approaches

2, β loses its effect, and the distribution becomes symmetrical regardless of β. The location parameter δ

merely shifts the distribution left or right, and the scale parameter c expands or contracts the distribution

about δ in proportion to c. Figure 1 depicts stable densities with different parameter values. The left panel

shows bell-shaped symmetric stable densities with α = 1.3, 2. When α = 2, the normal density results as

mentioned above. As α decreases, three things occur to the density: the peak gets higher, the regions flanking

the peak get lower, and the tails get heavier. The right panel shows maximally skewed stable densities with

α = 1.5 and β = −1, 1. The stable density is max-negatively skewed when β = −1, and max-positively

skewed when β = 1.

Since there are no known closed form expressions for general stable densities19, the most concrete way

to describe all possible stable distributions is through the characteristic function (CF) or Fourier transform

(FT).20 The log CF of the general stable distribution S (x;α, β, c, δ) is

log c fα,β,c,δ(t) = log E[eiXt]

=

 iδt − |ct|α
[
1 − iβsgn(t) tan

(
πα
2

)]
, α , 1

iδt + |ct|
[
1 + iβ 2

πsgn(t) log |ct|
]
, α = 1,

where α ∈ (0, 2] is the characteristic exponent, β ∈ [−1, 1] is the skewness parameter, c ∈ (0,∞) is the scale

19There are only three cases where one can write down closed form expressions for the density: stable-normal, Cauchy and Lévy
distributions.

20For a random variable X with density function f (x), the characteristic function is defined by

c f (t) = E[eiXt] =
∫ ∞

−∞

eiXtdx.

The function c f (t) completely determines the distribution of X.
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parameter, and δ ∈ (−∞,∞) is the location parameter.21

Two properties of stable distributions are important for deriving the generalized two-factor log-stable

RNM:

Property 1: Convolution22

X =
n∑

j=1

a jX j, X j ∼ ind. S (α, β j, c j, δ j) ⇒

X ∼
n
N

j=1
S (α, sgn(a j)β j, |a j|c j, a jδ j)

∼ S (α, β, c, δ),

where

β =

∑n
j=1 |a j|

αcαj sgn(a j)β j

cα
,

c =

 n∑
j=1

|a j|
αcαj


1/α

, and

δ =

n∑
j=1

a jδ j.

21The sgn function is defined as

sgn(t) =


−1, t < 0
0, t = 0
1, t > 0

22The convolution of f and g is written as fNg. If X and Y are two independent random variables with probability distributions
f and g, respectively, then the probability distribution of the sum z = X + Y is given by the convolution:

( fNg)(z) =

∫
f (τ)g(z − τ)dτ.
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Property 2: Two-sided Laplace transform

X ∼ S (α, β, c, δ), λ complex with Re(λ) ≥ 0 ⇒

Ee−λX =

 −∞, α < 2, β < 1

exp
(
−λδ − λαcα sec

(
πα
2

))
, β = 1,

or equivalently,

EeλX =

 ∞, α < 2, β > −1

exp
(
λδ − λαcα sec

(
πα
2

))
, β = −1.

To describe the generalized two-factor log-stable RNM, it is also necessary to introduce an exponentially

tilted stable distribution.23 An exponentially tilted positively skewed stable density with parameters α, c, δ,

and λ > 0 has density

ts+(x;α, c, δ, λ) = ke−λxs(x;α,+1, c, δ),

where k is a normalizing constant to be determined. Its CF, using Property 2(Two-sided Laplace transform)

with α , 1, is

c fts+(t) = k
∫ ∞

−∞

eixte−λxs(x;α,+1, c, δ)dx

= k
∫ ∞

−∞

e−(λ−it)xs(x;α,+1, c, δ)dx

= k exp
(
−(λ − it)δ − (λ − it)αcα sec

(
πα

2

))
.

Since for any CF, c f (0) ≡ 1 , we must have

k = exp
(
λδ + λαcα sec

(
πα

2

))
so that

log c fts+(t) = iδt + cα sec
(
πα

2

)
(λα − (λ − it)α).

23Tilted stable distributions have already been used in the context of option pricing by Vinogaradov (2002), and Createa and
Howison (2003).
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Figure 2: Exponentially Tilted Positively Skewed Stable Densities with Different Tilting Factor Values

Similarly, an exponentially tilted negatively skewed stable density with parameters α, c, δ, and λ > 0 is

expressed as follows:24

ts−(x;α, c, δ, λ) = keλxs(x;α,−1, c, δ),

k = exp
(
−λδ + λαcα sec

(
πα

2

))
, and

log c fts−(t) = iδt + cα sec
(
πα

2

)
(λα − (λ + it)α).

Figure 2 illustrates exponentially tilted positively skewed stable densities with different tilting parame-

ters λ = 0, 0.5, and 1. As λ increases, the upper tails get thinner. In contrast, for the exponentially tilted

negatively skewed stable densities, as λ increases, the lower tails get thinner.

4.2 Generalized Two-Factor Log-Stable RNM

The generalized two-factor log-stable option pricing formula is based on distributional assumptions on

the log marginal utilities of the asset vA(≡ log UA) and of the numeraire vN(≡ log UN). Let the two factors
24It is not possible to tilt a stable distribution with β ∈ (−1, 1) in either direction, since then

∫
eλx s(α, β, c, δ)dx would be infinite

for any value of λ , 0.
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u1 and u2 be independent maximally negatively skewed standard stable variates25, which affect both vA and

vN with a scale matrix C and a location vector D:

 vA

vN

 = C

 u1

u2

 + D

=

 cA1 cA2

cN1 cN2


 u1

u2

 +
 δ0

 , u j ∼ ind.S (α,−1, 1, 0), (14)

where ∀ci j ≥ 0, i = A,N and j = 1, 2.26 By Property 1 (Convolution) of stable distributions, both vA and vN

are also maximally negatively stable with different scale parameters cA and cN , but the same exponent α:

vA = cA1u1 + cA2u2 + δ ∼ S (α,−1, cA, δ) and

vN = cN1u1 + cN2u2 ∼ S (α,−1, cN , 0),

where cA = (cαA1 + cαA2)1/α and cN = (cαN1 + cαN2)1/α. By Property 2 (Two-sided Laplace transform) of stable

distributions, the expected marginal utilities of numeraire and asset are taken to be

EUA = EevA = eδ−cαA sec( πα2 ) and

EUN = EevN = e−cαN sec( πα2 ). (15)

Using the forward price equation (4), we have

F =
EUA

EUN
= eδ+(cαN−cαA) sec( πα2 ),

25In order for the expectations in (15) to be finite, vN and vA must both be maximally negatively skewed, i.e., have β = −1.
Therefore we have no choice but to make this assumption in order to evaluate log stable options. Nevertheless, this restriction does
not prevent log S T itself from having the general stable distribution as in (16).

26The scale parameters ci j are not annualized. If annualized scale parameters are known, the scale parameters ci j can be calculated
from the annualized one:

ci j = c̄i jT 1/α,

where c̄i j are the annualized scale parameters and T is the remaining time to maturity.
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which is the finite mean of the generalized two-factor log-stable RNM distribution by the mean-forward

price equality condition (12).

Since vA and vN are both stable with a same characteristic exponent α , Property 1 implies that the FM

for log S T also follows a stable distribution with the same exponent α:27

log S T = vA − vN =

2∑
j=1

(cA j − cN j)u j + δ

∼
2
N

j=1
S

(
α, sgn(cN j − cA j), |cN j − cA j|, δ j

)
∼ S (α, β, c, δ) , (16)

where

β =

∑2
j=1 sgn(cN j − cA j)|cN j − cA j|

α

cα
,

c =

 2∑
j=1

|cN j − cA j|
α


1/α

,

δ1 = δ, and δ2 = 0.

Finally, the RNM PDF (12) and model (14) imply that the RNM PDF for log S T is

q(z) =
1

EUN

∫ ∞

−∞

evN h(vN , vN + z)dvN

=
1

EUN

∫ ∞

−∞

e−
cN2cA1−cN1cA2

cN1−cA1
u2−

cN1
cN1−cA1

(z−δ)
· s(u2;α,−1, 1, 0)

s
(
z;α, sgn(cN1 − cA1), |cN1 − cA1|, δ − (cN2 − cA2)u2

)
du2. (17)

The derivation of (17) may be found in Appendix A. The RNM PDF q(z) proves to be a convolution of two

exponentially tilted stable distributions:

q(z) =
2
N

j=1
tssgn(cN j−cA j)

(
z j;α, |cN j − cA j|, δ j,

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣
)

(18)

where ts(·) is the exponentially tilted stable density. Since the closed form expression of stable distributions

27Carr and Wu (2003) evaluate the option price under log-stable uncertainty, but only by making the very restrictive assumption
that log returns have maximally negative skewness, i.e β = −1, in order to give the returns themselves finite moments. They
incorporate maximum negative skewness directly into the stable distribution describing the RNM of the underlying asset.
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does not exist, the RNM PDF (18) can be described by its log CF:28

log c fq(t) = iδt + |cN1 − cA1|
α sec

(
πα

2

) [∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣α − (∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)α]

+ |cN2 − cA2|
α sec

(
πα

2

) [∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣α − (∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣ − sgn(cN2 − cA2)it
)α]
. (19)

The proof of (18) and the derivation of (19) are given in Appendix B.

The parameters of the two exponentially tilted stable distributions are determined by the relative magni-

tude of elements in the scale matrix C: The skewness parameter β j is determined by the sign of cN j − cA j;

the scale parameter c j depends on the absolute value of cN j − cA j; and the tilting factor λ j is also affected

by the relative magnitude of cN j and cA j. The location parameter δ of the RNM can be solved from the

mean-forward price equality condition:

F =
EUA

EUN
= eδ+(cαN−cαA) sec( πα2 ) = S 0e(r f−d)T , (20)

where S 0 is the asset price at time 0, d is the dividend rate of asset, and S 0e(r−d)T is the implicit forward

price. This condition always holds if there are no arbitrage opportunities. Solving (20) for the location

parameter δ of the RNM yields

δ = log
(
S 0e(r f−d)T

)
− (cαN − cαA) sec

(
πα

2

)
.

Finally, the generalized two-factor log-stable RNM of log S T may be simply expressed as a function of the

five free parameters (α, cN1, cN2, cA1, cA2):

q(z) = q(z;α, cN1, cN2, cA1, cA2|S 0, r f , d,T ),

where S 0 is the asset price at time 0, r f is the risk-free interest rate, d is the dividend rate of asset, and T is

the remaining time to maturity.

The generalized two-factor log-stable RNM has a very flexible parametric form with five free parameters
28Unless β = 0, the case α = 1 require special treatment of both the CF and the location parameter. Therefore, the RNM PDF

equation may not apply in that special case. In practice, however, this does cause problems because α = 1 is irrelevant for an asset
return’s distribution.
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for approximating other probability distributions, so it provides a new parametric method for estimating the

RNM from a cross-section of option data. As shown in (18), the generalized two-factor log-stable RNM

q(z) has two additional tilting parameters which control the shapes of upper and lower tail respectively. This

model thus allows a considerably accurate tool for estimating the RNM from the observed option prices

even if the log-stable assumption might not be satisfied.

4.3 Special cases

The Black-Scholes log-normal Model (1973), the finite moment log-stable Model [Carr and Wu (2003)]

and the Orthogonal log-Stable Model [McCulloch (1978, 1985, 1987, and 2003) and Hales (1997)] may be

considered as special cases of the generalized two-factor log-stable model. In this section we describe these

three models under the generalized two-factor log-stable model framework.

4.3.1 Othorgonal Log-Stable Model

The orthogonal log-stable model of McCulloch (1978, 1985, 1987, and 2003) and Hales (1997) assumes

that vA and vN are independent with

vA ∼ S (α,−1, cA, δ) and

vN ∼ ind. S (α,−1, cN , 0).

The orthogonal assumption can be expressed as a diagonal scale matrix in terms of the generalized two-

factor framework: vA

vN

 =
 cA 0

0 cN


 u1

u2

 +
 δ0

 , u j ∼ ind. S (α,−1, 1, 0), j = 1, 2.

By the convolution property of stable distributions, the FM PDF of the orthogonal log-stable model, which

is a convolution of max-positively stable density and max-negatively skewed density, is also a stable distri-
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bution:

ϕ(z) = s(z1 : α,−1, cA, δ)Ns(z2 : α, 1, cN , 0)

= s(z : α, β, c, δ),

where β =
cαN−cαA

cα and c = (cαN + cαA)1/α.

The generalized log-stable RNM equation (18) implies that the RNM of the orthogonal log-stable model

is a convolution of the max-negatively skewed stable density and exponentially tilted max-negatively skewed

stable density:

q(z) =
2
N

j=1
ts

(
z j;α, sgn(cN j − cA j), |cN j − cA j|, δ j,

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣
)

= ts−(z1;α, cA, δ, 0)Nts+(z2;α, cN , 0, 1)

= s(z1;α,−1, cA, δ)Nts+(z2;α, cN , 0, 1).

With the mean-forward price equality condition:

F =
EUA

EUN
= eδ+(cαN−cαA) sec( πα2 ) = S 0e(r f−d)T ,

the location parameter of the RNM can be solved as:

δ = log(S 0e(r f−d)T ) − βcα sec
(
πα
2

)
.

Therefore, the orthogonal stable RNM of log S T is directly expressed as a function of the three parameters

(α, β, c) of the FM29:

q(z) = q(z;α, β, c|S 0, r f , d,T ).

29The free parameters (β, c) are equivalent to (cA, cN), since β =
cαN−cαA

cα and c = (cαN + cαA)1/α.
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4.3.2 Finite Moment Log-Stable Model

The finite moment log-stable model of Carr and Wu (2003) assumes that the RNM is a max-negatively

skewed log-stable distribution, i.e., β = −1. When β = −1, the RNM and FM have common density:

q(z) = ϕ(z) = s
(
z;α,−1, c, log F + cα sec

(
πα

2

))
.

The finite moment assumption, β = −1, can be expressed as the following scale matrix under the gener-

alized two-factor framework: vA

vN

 =
 c 0

0 0


 u1

u2

 +
 δ0

 , u j ∼ ind. S (α,−1, 1, 0), j = 1, 2.

With the mean-forward price equality condition:

F =
EUA

EUN
= eδ−cα sec( πα2 ) = S 0e(r f−d)T ,

the location parameter of the RNM can be solved as:

δ = log(S 0e(r f−d)T ) + cα sec
(
πα
2

)
.

Therefore, the finite moment log-stable RNM of log S T is simply expressed as a function of the two free

parameters (α, c):

q(z) = q(z;α, c|S 0, r f , d,T ).

4.3.3 Black-Scholes Log-Normal Model

The Black-Scholes option pricing model (1973) assumes the log price follows a normal distribution.

When α = 2, a stable distribution results normal with mean δ and variance σ2 = 2c2. Therefore, the log-

normal case can be considered as a special case of the generalized two-factor stable model. The log-normal
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assumption can be expressed as a generalized form:

 vA

vN

 =
 cA1 0

cN1 cN2


 u1

u2

 +
 δ0

 , u j ∼ ind. S (α = 2,−1, 1, 0), j = 1, 2.

We can pin down the location parameter from the mean-forward price equality condition:

δ = log F − (cαN − cαA) sec
(
πα

2

)
= log F −

1
2

 c2
N1 − c2

A1 + c2
N2

(cN1 − cA1)2 + c2
N2

σ2.

Thus, the FM of log S T is

ϕ(z) = s(z;α = 2, β, c, δ)

= φ(z; δ, σ2 = 2c2)

= φ

z; log F −
1
2

 c2
N1 − c2

A1 + c2
N2

(cN1 − cA1)2 + c2
N2

σ2, σ2

 .
The RNM of log S T is

q(z) = tssgn(cN1−cA1)

(
z1; 2, |cN1 − cA1|, δ,

∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣) Nts+ (z2; 2, cN2, 0, 1)

= φ

(
z; log F −

σ2

2
, σ2

)
,

where F = e(r f−d)T S 0 and φ(·) is the PDF of normal distributions.30 Accordingly, the Black-Scholes log-

normal RNM can be expressed as a function of only one free parameter σ:

q(z) = q(z;σ|S 0, r, d,T ).

30In the log-normal case, the RNM and FM therefore both have the same Gaussian shape in terms of log price, with the same
variance. They differ only in location, by the observable risk premium(

1 −
c2

N1 − c2
A1 + c2

N2

(cN1 − cA1)2 + c2
N2

)
σ2

2

that is determined by the scale matrix, i.e., by the relative standard deviation of log UN and log UA. This comes about because a
exponentially tilted normal distribution is just another normal back again, with same variance but different mean.
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Figure 3: Option Value Functions for S&P 500 Index Options on Sep 13, 2006 (F=1,325.7)

5 RNM Estimation from Option Market Prices

In this section, we estimate the conditional RNM from a cross-section of S&P 500 index option prices

using the BS lognormal model, the finite moment log-stable model, the orthogonal stable model, and the

generalized two-factor stable model under the modified least square criterion. We also conduct a simple

likelihood ratio test for the model selection among the competing nested models.

5.1 OTM Option value functions

Let C(K) be the value, in units of numeraire to be delivered at time 0, of a European call option which

gives right to the holder to purchase 1 unit of the asset in question at time T at strike price K. By the

definition of the RNM, its value must be the discounted expectation of its payoff under either r(x) or q(z):

C(K) = e−r f T
∫ ∞

0
max(x − K, 0)r(x)dx

= e−r f T
∫ ∞

−∞

max(ez − K, 0)q(z)dz. (21)
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Similarly, let P(K) be the value of a European put option which allows the owner to sell one unit of the asset

at time T at strike price K so that

P(K) = e−r f T
∫ ∞

0
max(K − x, 0)r(x)dx

= e−r f T
∫ ∞

−∞

max(K − ez, 0)q(z)dz. (22)

Define the out-of-the-money (OTM) option value function by

V(K; θ) =

 P(K; θ) for K < F

C(K; θ) for K ≥ F
, (23)

where θ is the vector of the RNM parameters. Using the put-call parity31, we can rewrite (23) as:

V(K; θ) = min
(
C(K; θ), P(K; θ)

)
. (24)

The OTM option value function V(K) is continuous at F, and is also monotonic and convex on either side of

F under the arbitrage-free condition. Figure 3 illustrates option value functions using S&P 500 index options

on Sep 13, 2006 (F=1,325.7). The left panel shows the call option value function C(K) and the put option

value function P(K). The right panel shows the OTM option value function V(K) = min(C(K), P(K)).

Since there are no known closed form expressions for general stable densities, the option value function

V(K) may be evaluated through the characteristic function (CF) or Fourier transform (FT). With no loss of

generality, we may measure the asset in units such that F = 1. Modifying Carr and Madan (1999),32 the

31In the absence of arbitrage opportunities, the following relationship holds for European option:

C(K) + e−r f T K = P(K) + e−dT S 0,

so that C(K) = P(K) at K = F. The put-call parity implies that C(K), P(K), and V(K) are equivalent, so we use V(K) instead of
C(K) and P(K).

32Carr and Madan in fact base their (14) on a function which equals P(K) when K is less than the spot price S 0 and C(K)
otherwise. This unnecessarily creates a small discontinuity which can only aggravate the Fourier inversion. The present function
V(K) avoids this problem, with the consequence that (25) is in fact somewhat simpler than their (14).
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Fourier Transform of v(z) ≡ V(ez) is then

φv(t) = e−rT
[
c fq(t − i) − 1

it − t2

]
, t , 0, (25)

where c fq is the CF of the RNM pdf q(z). When t = 0, this formula takes the value 0/0, but the limit may

be evaluated by means of l’Hôpital’s rule. In the case of the generalized two-factor generalized log-stable

model, this becomes

φv(0) = e−rT
c f ′q(−i)

i

= e−rT


− 2∑

j=1

(c α
N j − c αA j ) sec

(
πα

2

) + α 2∑
j=1

sgn(cN j − cA j)|cN j − cA j|
α sec

(
πα

2

)
·

(∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣ − sgn(cN j − cA j)
)α−1 .

Unfortunately, however, the function v(z) has a cusp at z = 0 corresponding to that in V(K) at K = F,

so that numerical inversion of (25) by means of the discrete inverse FFT results in pronounced spurious

oscillations in the vicinity of the cusp. The problem is that the ultra-high frequencies required to fit the cusp

and its vicinity are omitted from the discrete Fourier inversion, which only integrates over a finite range of

integration instead of the entire real line. Increasing the range of integration progressively reduces these

oscillations, but never entirely eliminates them. However, the fact that increasing the range of integration

does give improved results allows the FFT inversion results to be “Romberged” to give satisfactory results, as

follows: Start with a large number of points N = N1, with a log-price step ∆z = c
√

2π/N (or a round number

in that vicinity if desired), and a frequency-domain step ∆t = 2π/(N∆z). Then quadruple N to N2 = 4N1,

and then again to N3 = 16N1, halving both step sizes each time, so as to double the range of integration each

time, while obtaining values for the original z grid. Each of the original N1 z values now has 3 approximate

function values v1, v2, and v3 that are converging on the true value at an approximately geometric rate as the

grid fineness and range of integration are successively doubled. The true value may then be approximated

to a high degree of precision at each of these points simply by extrapolating the geometric series implied by

the three values to infinity:

v∞ = v3 +
ρ

1 − ρ
(v3 − v2),
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where ρ = (v3−v2)/(v2−v1). The residual error may then be conservatively estimated by computing v0 using

N0 = N1/4, repeating the above procedure using v0, v1, and v2, and assuming that the absolute discrepancy

between the two results is an upper bound on the error. It was found that for α ≥ 1.3, N1 = 210 usually gives

a maximum estimated error less than .0001 relative to F = 1, though occasionally N1 = 214 is necessary.33

Put-call parity may then be used to recover C(K) and/or P(K), as desired, from V(K) ≡ v(log K). The

above procedure gives the value of v(z) at N1 closely spaced values of z, and therefore V(K) at N1 closely

spaced values of K. Unfortunately, however, these will ordinarily not precisely include the desired exercise

prices, and because of the convexity of V(K) on each side of the cusp, linear interpolation may give an

interpolation error in excess of the Fourier inversion computational error. Nevertheless, cubic interpolation

on C(K) and/or P(K) using two points on each side of each desired exercise price gives very satisfactory

results.

5.2 Modified Least Square Criterion

By using the OTM option value function (23), option pricing models can be expressed as a non-linear

regression with the parameters of the RNM:

Vi = V(Ki; θ|S 0, r f , d,T ) + εi, i = 1, . . . ,N

= Vi(θ) + εi, (26)

where θ is the vector of the RNM parameters, Vi is an observed OTM option price, Vi(θ) is the theoretical

OTM option price, and εi is the pricing error of the OTM option with strike price Ki. Consequently, we may

apply non-linear regression techniques to the model (26) in order to estimate the parameters θ of the RNM.

If we observe transaction prices for all options across strike prices at the same time, the Non-linear Least

Squares (NLS) criterion would be proper for estimating the RNM parameters:

min
θ∈Θ

L(S S E) =
N∑

i=1

(Vi − Vi(θ))2

= ε>ε,

33For the financially less relevant values of α < 1.3, the infinite first derivative of the imaginary part of (25) at the origin causes
additional computational problems. These problems become even worse for α < 1, when the imaginary part becomes discontinuous
at the origin.
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Figure 4: Loss Functions of NLS and MLS

where ε = [ε1 ε2 · · · εN]> is the vector of pricing errors.34

Unfortunately the transaction prices are recorded with substantial measurement errors due to non-

synchronous trading so that we instead use bid and ask quote prices. The bid-ask average prices have been

used as an alternative of the transaction prices in many studies. The NLS criterion, however, does not fully

exploit the additional information coming from the individual bid and ask quote prices because it only uti-

lizes the bid-ask average OTM option prices. In our study we therefore use a modified least squares (MLS)

criterion under which the loss value (Modified SSE, MSSE) increases only when the theoretical prices fall

outside of the bid-ask price range. However, since multiple solutions are possible under the MLS criterion,

we add an arbitrary small ordinary least square term to guarantee a unique solution:

min
θ∈Θ

L(MS S E) =
N∑

i=1

[ (
VB

i − Vi(θ)
)2

+
+

(
Vi(θ) − VA

i

)2

+
+ λ

(
V̄i − Vi(θ)

)2 ]
,

where VB
i is the OTM option bid price, VA

i is the OTM option ask price, V̄i = (VB
i +VA

i )/2 is the OTM option

bid-ask average price at strike price Ki, X+ = max(0, X), and λ is a small constant35. Figure 4 illustrates

the loss functions based on the two criteria. The left panel shows the NLS loss function, and the right panel

34We cannot use the weighted least square criterion because the variance structure of pricing errors is not known. To construct
variance structure of pricing errors, it is necessary to consider different source of pricing errors: non-synchronous trading, price
discreteness, and the bid-ask bounce. Unfortunately, there is no simple or generally accepted manner for modeling all of these
effects.

35In our study, we set λ = 0.01.
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presents the MLS loss function.

5.3 Empirical results of the RNM estimation

5.3.1 Data

We have estimated the parametric risk-neutral density using the cross-section data on the S&P 500 index

options traded at the Chicago Board of Options Exchange (CBOE). The transaction prices are recorded

with substantial measurement errors due to non-synchronous trading so that we use daily closing bid and

ask price quotes. We have obtained 100 sets of cross-section data on the S&P 500 index options which

are transacted with 2 months to maturity in 2006. We have filtered the data using the arbitrage violation

conditions since the existence of arbitrage possibilities can lead to negative risk-neutral probabilities. By

checking the monotonicity and convexity of the option pricing functions, we may eliminate option prices

which violate the arbitrage-free condition. After eliminating the violating data, we have 8,468 option price

quotes.

Since risk-free interest rates for a time of maturity exactly matching the options’ time to maturity gen-

erally can not be observed, we compute implicit risk-free interest rates from the European put-call parity as

suggested by Jackwerth and Rubinstein (1996). The estimation of the RNM is conducted by using the four

models separately for each cross section data set.

5.3.2 Goodness-of-fit

In this section, we compare the goodness-of-fit of the RNM estimations of the four option pricing mod-

els: the BS log-normal option pricing model (BS), the finite moment log-stable option pricing model (FS),

the orthogonal log-stable option pricing model (OS), and the generalized two-factor log-stable option model

(GS). If option prices are exact and continuous, and if the pricing model holds exactly for every single op-

tion, the RNM parameters can be recovered with zero pricing errors between the estimated and observed

prices. However, model and market imperfections introduce pricing errors. In order to compare these pricing

errors, we first estimate the RNM by applying the four option pricing models to S&P 500 index (European)

options under the modified least square criterion (MLS). Then, the four models are compared by examining

the pricing errors associated with each model in terms of the Modified Root Mean Squared Error (MRMSE),
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Figure 5: Estimated RNM Densities for S&P 500 Index Options on Sep. 13, 2006

BS FS OSa GSb

σ α c α cN cA α cN1 cN2 cA1 cA2

0.116 1.743 0.080 1.743 0 0.080 1.343 0.405 0.631 0.398 0.750

a Implied FM parameters of the OS model: α = 1.743, β = −1, and c = 0.080.
b Implied FM parameters of the GS model: α = 1.343, β = −0.956, and c = 0.121.
Note: The entries report the sample average of the estimated parameters. The sample contains 100 sets of cross-section
data on S&P 500 index options with 2 months to maturity, which are traded in 2006.

Table 1: Estimated RNM Parameters for S&P 500 Index Options

which represents the average pricing error:

MRMS E =

√
1

N − k
MS S E,

where MS S E is the modified sum of squared errors, N is the number of strike prices, i.e., the number of

observations, and k is the number of free parameters of the RNM.

The estimated RNM density functions for the four models are illustrated in Figure 5, and the estimated

average RNM parameters are reported in Table 1. Also, given the RNM density from the each model, Equa-

tion (21) and (22) give predicted values for the option prices. These model predictions and the actual bid-ask
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Figure 6: Fitted Option Prices and Volatility Smiles for S&P 500 Index Options on Sep. 13, 2006

prices are plotted in the upper panels in Figure 6 for an illustrative date. We calculate the volatility smiles

from the predicted prices and the actual bid-ask prices, and they are plotted in the lower panels in Figure

6. Since the Black-Scholes option price is monotonically increasing in volatility, deviations of estimated

volatilities from actual implied volatilities are also related with pricing errors of the option pricing model.

Options with actual implied volatility above (below) the estimated volatility are underpriced (overpriced) by

the option pricing model.36

The fitting performances of the four models are reported in Table 2 in terms of the Modified Root Mean

Squared Error (MRMSE). Table 2 shows that the GS model outperforms the BS, FS and OS model with

respect to the goodness-of-fit for all data sets. Note that the fitting performance of the FS and OS models

are identical. This implies that there is no additional improvement from introducing an additional parameter

cN of the OS model relative to the FS model. That is to say, the S&P 500 returns have maximally negative

36This is based on the assumption that there is no mispricing in the observed option prices. If the model is correctly specified and
the observed option prices are mispriced, options with actual implied volatility above (below) the estimated volatility are overpriced
(underpriced).
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BS FS OS GS
MRMSE 150.848 3.480 3.480 0.013
(1st term) 148.716 3.334 3.334 0.004
(2nd term) 2.132 0.146 0.146 0.009

Note: The 1st term of MSSE is
∑N

i=1

[ (
VB

i − Vi(θ)
)2

+
+

(
Vi(θ) − VA

i

)2

+

]
, and the

2nd term is the ordinary least square term
∑N

i=1 λ
(
V̄i − Vi(θ)

)2
. The entries re-

port the sample average of the test statistics and the corresponding P-values.
The sample contains 100 sets of cross-section data on S&P 500 index options
with 2 months to maturity, which are traded in 2006.

Table 2: Goodness-of-fit of the Option Pricing Models

skewness.

The BS model overprices options around the ATM price, while it underprices options with relatively

large or small exercise prices. The FS and OS models perform relatively better around the ATM price, but

exhibits pricing bias in both the upper and lower tails. On the other hand, the GS model shows almost perfect

goodness-of-fit for all exercise prices. The first terms of the MSSE are almost zero for the GS model. This

result indicates that the theoretical option prices based on the estimated RNM could fall into the bid-ask

option price range across almost all strike prices.

5.3.3 Likelihood Ratio Test

Using the Kullback-Leibler Information Criterion (KLIC), Vuong (1989) proposed simple likelihood-

ratio tests for the model selection among the competing models, which are non-nested or nested. We assume

that the pricing errors are i.i.d. normally distributed with variance σ2. Under such assumptions, minimizing

the sum of squared pricing error is equivalent to maximizing the log likelihood function. Thus, the NLS

estimates can be regarded as maximum likelihood estimates.37

37Under the MLS criterion it is not possible to compute the LR statistics so that we use NLS criterion for the model selection
test.
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Consider two competing models F and G whose log density functions are given by, respectively:

log f (eθi; θ) = −
1
2

log
(
2πσ2

f

)
−

e2
θi

2σ2
f

and

log g(eγi; γ) = −
1
2

log
(
2πσ2

g

)
−

e2
γi

2σ2
g
,

where eθi and eγi denote the pricing error on the ith option under the model F and G, respectively, and θ

and γ are the parameter vectors of F and G, respectively. Since the maximum likelihood estimate for σ2 is

simply the mean squared pricing error: mse = e>e/N, the log likelihood functions are given by, respectively:

L f (eθ; θ) =
N∑

i=1

log f (eθi; θ) = −
N
2

[
1 + log(2π) + log

(
eθ>eθ

N

)]
and

Lg(eγ; γ) =
N∑

i=1

log g(eγi; γ) = −
N
2

[
1 + log(2π) + log

(eγ>eγ
N

)]
,

where eθ and eγ are the pricing error vectors for each model. Furthermore, the likelihood ratio between the

two models (F and G) is given by:

LR
(
θ̂, γ̂

)
= L f (êθ; θ̂) − Lg(êγ; γ̂)

= −
N
2

log
( ê>
θ

êγ
N

)
− log

 ê>γ êγ
N


= −

N
2

[
log

( ê>
θ

êθ
ê>γ êγ

)]
.

If the model G is nested in the model F, any conditional density g(·; γ) is also a conditional density

f (·; θ) for some θ in Θ. Based on the KLIC, we consider the following hypotheses and definitions:38

H0 : E
[
log

f (eθi; θ)
g(eγi; γ)

]
= 0 : F and G are equivalent

HA : E
[
log

f (eθi; θ)
g(eγi; γ)

]
> 0 : F is better than G.

38Since G can never be better than F, HA does not include the case such that G is better than F.
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Model G
BS FS OS

2LR P-value 2LR P-value 2LR P-value
FS 121.7 0.000 – – – –

Model F OS 121.7 0.000 0.0 1.000 – –
GS 266.3 0.000 144.5 0.000 144.5 0.000

Note: The test statistic is asymptotically chi-square distributed with p−q degree of freedom. The entries
report the sample average of the test statistics and the corresponding P-values. The sample contains 100
sets of cross-section data on S&P 500 index options with 2 months to maturity, which are traded in
2006.

Table 3: Likelihood Ratio Tests for Nested Models

If G is nested in F and F is correctly specified, then

under H0 : 2LR(θ̂, γ̂)
D
−→ χ2

p−q,

under HA : 2LR(θ̂, γ̂)
a.s.
−→ +∞,

where p and q are the number of parameters in models F and G, respectively.

The three stable type models (BS, FS, and OS) are nested in the GS model; the BS and FS model

are nested in the OS model; and the BS model is nested in the FS model. The LR test statistics and the

corresponding P-values between nested models are reported in Table 3. The test results indicate that the GS

model is significantly better the BS, FS, and OS models and the OS and FS model are significantly better

the BS model. However, the OS model and FS model are equivalent even though the OS model has an

additional parameter relative to the FS model.

6 Concluding Remark

The generalized two-factor log-stable option pricing model is a highly integrated approach to evaluating

contingent claims in the sense that it provides state prices, pricing kernels, and the risk neutral measure

explicitly. The RNM can be simply derived by adjusting the FM for the state-contingent value of the nu-

meraire. Under generalized two-factor log-stable uncertainty the RNM is expressed as a convolution of two

exponentially tilted stable distributions, while the FM itself is a pure stable distribution. Furthermore, the
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generalized two-factor log-stable RNM has a very flexible parametric form for approximating other prob-

ability distributions. Thus, this model also provides a considerably accurate tool for estimating the RNM

from the observed option prices even though the two-factor log-stable assumption might not be satisfied.

The empirical results of the RNM estimation from the S&P 500 index options shows that the generalized

two-factor log-stable model gives better performance than the Black-Scholes log-normal model, the finite

moment log-stable model and the orthogonal log-stable model in fitting the observed option prices. More-

over, the distributional assumption for the generalized stable model is consistent with the implied volatility

structure, which violates the lognormal assumption of the Black-Scholes model.

The Black-Scholes log-normal model, the finite moment log-stable model, and the orthogonal log-stable

model are nested by the generalized two-factor log-stable model. In order to verify the empirical perfor-

mance of the generalized two-factor log-stable model, it is necessary to compare it with other parametric

models which are not nested by it. Also, we need to examine the stability or robustness of the RNM param-

eter through the Monte Carlo experiment or the Bootstrap technique. Further research should be conducted

on these issues to verify the empirical performance of the generalized stable option39

39See Lee (2008).
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APPENDICES

A Derivation of (18)

The joint distribution of vN and vA can be expressed as

h(vN , vA) = h(vN , vN + z)

=
1

|cN1cA2 − cN2cA1|
fU1U2(u1, u2), (27)

where fU1U2(u1, u2) is the joint distribution of two factors u1 and u2.

Since

z ≡ log S T = vA − vN

= −(cN1 − cA1)u1 − (cN2 − cA2)u2 + δ (28)

and

u1 = −
cN2 − cA2

cN1 − cA1
u2 −

1
cN1 − cA1

z +
1

cN1 − cA1
δ

= −
cN2 − cA2

cN1 − cA1
u2 −

1
cN1 − cA1

(z − δ), (29)

the log marginal utility of numerarie vN can be written as follows:

vN = cN1

(
−

cN2 − cA2

cN1 − cA1
u2 −

1
cN1 − cA1

(z − δ)
)
+ cN2u2

=

(
cN2cN1 − cN2cA1 − cN1cN2 + cN1cA2

cN1 − cA1
u2

)
−

cN1

cN1 − cA1
(z − δ)

= −
cN2cA1 − cN1cA2

cN1 − cA1
u2 −

cN1

cN1 − cA1
(z − δ) (30)
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By substituting (27), (28) and (30) into (12), we have

q(z) =
1

EUN

∫ ∞

−∞

evN h(vN , vN + z)dvN

=
1

EUN

∫ ∞

−∞

e−
cN2cA1−cN1cA2

cN1−cA1
u2−

cN1
cN1−cA1

(z−δ)
·

1
|cN1cA2 − cN2cA1|

fU1U2(u1, u2)
∣∣∣∣∣ |cN1cA2 − cN2cA1|

cN1 − cA1

∣∣∣∣∣ du2

=
1

|cN1 − cA1|

1
EUN

∫ ∞

−∞

e−
cN2cA1−cN1cA2

cN1−cA1
u2−

cN1
cN1−cA1

(z−δ)
·

fU1U2

(
−

z − δ + (cN2 − cA2)u2

cN1 − cA1
, u2

)
du2. (31)

By using (29), the joint distribution of u1 and u2 can be expressed as:

fU1U2

(
−

z − δ + (cN2 − cA2)u2

cN1 − cA1
, u2

)
= s(u2;α,−1, 1, 0) s

(
−

z − δ + (cN2 − cA2)u2

cN1 − cA1
;α,−1, 1, 0

)
= |cN1 − cA1|s(u2;α,−1, 1, 0) s

(
z;α, sgn(cN1 − cA1), |cN1 − cA1|, δ + (cN2 − cA2)u2

)
(32)

Plugging (32) into (31), we finally have the stable RNM pdf:

q(z) =
1

EUN

∫ ∞

−∞

e−
cN2cA1−cN1cA2

cN1−cA1
u2−

cN1
cN1−cA1

(z−δ)
· s(u2;α,−1, 1, 0)

s
(
z;α, sgn(cN1 − cA1), |cN1 − cA1|, δ − (cN2 − cA2)u2

)
du2. (33)
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B Proof of (19) and Derivation of (20)

The generalized two-factor log-stable RNM is a convolution of two exponentially tilted stable distribu-

tions:

q(z) =
2
N

j=1
tssgn(cN j−cA j)

(
z j;α, |cN j − cA j|, δ j,

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣
)

Proof.

From (33), the CF of the generalized two-factor log-stable RNM is written as:

c fq(t) =
∫ ∞

−∞

eitzq(z)dz

=
1

EUN

∫ ∞

−∞

e−
cN2cA1−cN1cA2

cN1−cA1
u2+

cN1
cN1−cA1

δs(u2;α,−1, 1, 0) · (34)∫ ∞

−∞

e
−

(
cN1

cN1−cA1
−it

)
z

s
(
z;α, sgn(cN1 − cA1), |cN1 − cA1|, δ − (cN2 − cA2)u2

)
dz du2.

Using the properties of sign function, we have:

I. −

(
cN1

cN1 − cA1
− it

)
z

= − sgn(cN1 − cA1)
(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)

z (35)

II.
(
−

cN2cA1 − cN1cA2

cN1 − cA1
+ sgn(cN1 − cA1)(cN2 − cA2)

(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
))

u2

= (cN2 − (cN2 − cA2)) u2 (36)

III. −sgn(cN1 − cA1)
(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)
δ

−

(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)α
|cN1 − cA1|

α sec
(
πα

2

)
+

cN1

cN1 − cA1
δ

= δit −
(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)α
|cN1 − cA1|

α sec
(
πα

2

)
(37)
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By using (35), the inner integration term in (34) may be written as:

∫ ∞

−∞

e
−sgn(cN1−cA1)

(∣∣∣∣ cN1
cN1−cA1

∣∣∣∣−sgn(cN1−cA1)it
)
z
·

s
(
z;α, sgn(cN1 − cA1), |cN1 − cA1|, δ − (cN2 − cA2)u2

)
dz

= exp
[
− sgn(cN1 − cA1)

(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)

(δ − (cN2 − cA2)u2)

−

(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)α
|cN1 − cA1|

α sec
(
πα

2

) ]
(38)

By using (36), (37), and (38), the CF of the RNM may be expressed as:

c fq(t) =
1

EUN
e
δit−

(∣∣∣∣ cN1
cN1−cA1

∣∣∣∣−sgn(cN1−cA1)it
)α
|cN1−cA1 |

α sec( πα2 )
·∫ ∞

−∞

ecN2−(cN2−(cN2−cA2)it)u2 s(u2;α,−1, 1, 0) du2. (39)

Let

w = (cN2 − cA2)u2, (40)

so that

∣∣∣∣∣du2

dw

∣∣∣∣∣ = 1
|cN2 − cA2|

. (41)
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With (40) and (41), the integral term of (39) is written as:

∫ ∞

−∞

ecN2−(cN2−(cN2−cA2)it)u2 s(u2;α,−1, 1, 0) du2

=

∫ ∞

−∞

e
(

cN2
cN2−(cN2−cA2

−it
)
w

s
(

1
cN2 − cA2

w;α,−1, 1, 0
)

1
|cN2 − cA2|

dw

= exp
[
−

(∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣ − sgn(cN2 − cA2)it
)α
|cN2 − cA2|

α sec
(
πα

2

) ]
. (42)

By Property 2 of stable distributions, the expected marginal utility of numeraire is

EUN = E evN = exp(δ2 − cαN sec
(
πα

2

)
)

= exp
(
−(cαN1 + cαN2) sec

(
πα

2

))
. (43)

By substituting (42), and (43) into (39), the CF of the RNM is taken to be

c fq(t) = exp
{

iδt + |cN1 − cA1|
α sec

(
πα

2

) [∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣α − (∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)α]

+ |cN2 − cA2|
α sec

(
πα

2

) [∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣α − (∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣ − sgn(cN2 − cA2)it
)α] }
.

Finally, the log CF of the RNM is

log c fq(t) = iδt + |cN1 − cA1|
α sec

(
πα

2

) [∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣α − (∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)α]

+|cN2 − cA2|
α sec

(
πα

2

) [∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣α − (∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣ − sgn(cN2 − cA2)it
)α]
.

(44)
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tssgn(cN j−cA j)

(
z;α, |cN j − cA j|, δ j,

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣
)

= k e
−sgn(cN j−cA j)

∣∣∣∣∣ cN j
cN j−cA j

∣∣∣∣∣ zs
(
x;α, sgn(cN j − cA j), |cN j − cA j|, δ j

)
has the CF:

c fts, j(t) = k
∫ ∞

−∞

e
−

(
sgn(cN j−cA j)

∣∣∣∣∣ cN j
cN j−cA j

∣∣∣∣∣−it
)

z
s
(
z;α, sgn(cN j − cA j), |cN j − cA j|, δ j

)
dz

= k e
−

(
sgn(cN j−cA j)

∣∣∣∣∣ cN j
cN j−cA j

∣∣∣∣∣−it
)
δ j−

(∣∣∣∣∣ cN j
cN j−cA j

∣∣∣∣∣−sgn(cN j−cA j)it
)α
|cN j−cA j |

α sec( πα2 )
.

Since

c fts, j(0) = k exp
[
− sgn(cN j − cA j)

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣ δ j −

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣α |cN j − cA j|
α sec

(
πα

2

) ]
≡ 1,

we must have

k = exp
[
sgn(cN j − cA j)

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣ δ j +

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣α |cN j − cA j|
α sec

(
πα

2

) ]
,

hence

c fts, j(t) = exp
{

iδ jt + |cN j − cA j|
α sec

(
πα

2

) [∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣α −
(∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣ − sgn(cN j − cA j)it
)α] }
.

Finally, the log CF of the tilted stable distribution is

log c fts, j(t) = iδ jt + |cN j − cA j|
α sec

(
πα

2

) [∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣α −
(∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣ − sgn(cN j − cA j)it
)α]
.

(45)
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Combining (44) and (45), we have

log c fq(t) =
2∑

j=1

log c fts, j(t).

Since the log CF of the convolution of two densities is the sum of their respective log CFs, the generalized

RNM q(z) is such a convolution of two exponentially tilted stable densities. �
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Option Pricing. mimemo, University of Oxford Mathematical Institute.

Chang, P.H., and Melick, W., 1999. Background Note, in: Estimating and Interpreting Probability Density
Functions-Proceedings of a Workshop held at the BIS on 14 June 1999. Bank for International Settlements.

Cox, J., Ross, S., 1976. The Valuation of Options for Alternative Stochastic Processes. Journal of Fi-
nancial Economics 3, 145-166.

44



Dekel, E., Lipman, B., Rustichini, A., 2001. A Unique Subjective State Space for Unforeseen Contin-
gencies. Econometrica 69, 891-934.

Fama., E., 1963. Mandelbrot and the stable paretian hypothesis. Journal of Business 36(4), 420-429.

Gul, F., Pesendorfer, W., 2004. Random Expected Utility. mimemo. Princeton University.

Hales, S.J., 1997. Valuation of Foreign Currency Options with the Paretian Stable Option Pricing Model.
Ph.D. dissertation, Ohio State University Department of Economics.

Jackwerth, J., 1999. Option Implied Risk-neutral Distributions and Implied Binomial Trees: a Literature
Review. Journal of Derivatives 7, 66-82.

Jackwerth, J., Rubinstein, M., 1996. Recovering Probability Distributions from Option Prices. Journal
of Finance 51, 1611-31.

Kreps, D., 1979. A Preference for Flexibility. Econometrica 47, 565-576.

Lee, S.H., 2008. Parametric RNM Estimation: A Horse Race. mimemo. The Ohio State University.

Mandelbrot, B., Taylor, H.M., 1967. On the Distribution of Stock Price Differences. Operations Research
15, 1057-1062.

McCulloch, J.H., 1978. The Pricing of Short-Lived Options When Price Uncertainty is Log-Symmetric
Stable. Working Paper 89, Boston College.

McCulloch, J.H., 1985. Interest-Risk Sensitive Deposit Insurance Premia: Stable ACH Estimates. Jour-
nal of Banking and Finance 9, 137-156.

McCulloch, J.H., 1987. Foreign Exchange Option Pricing with Log-Stable Uncertainty. in: S.J. Khoury
and A. Ghosh (eds). Recent Developments in International Banking and Finance, Vol.1, ed. by. Lexington,
MA: Lexington, 231-245.

McCulloch, J.H., 1996. Financial Applications of Stable Distributions. in: G.S Maddala and C.R. Rao
(eds.), Handbook of Statistics, Vol. 14, Elsevier, North Holland 1996, 393-425.

McCulloch, J.H., 2003. The Risk-Neutral Measure and Option Pricing under Log-Stable Uncertainty.
mimemo. Ohio State University

Ross, S., 1976. Options and effciency. Quarterly Journal of Economics 90, 75-89. Rosenberg, J., En-
gle, R., 2002. Empirical pricing kernels. Journal of Financial Economics 64, 341-372.

Zolotarev, V.M., 1986. One-Dimensional Stable Laws. Vol. 65 in Translations of Mathematical Mono-

45



graphs. American Mathematical Society. (1983 Russian original).
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