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ABSTRACT 

   A simplified version of the Neyman (1937) “Smooth” goodness-of-fit test is extended to 

account for the presence of estimated model parameters, thereby removing overfitting bias.  Using a 

Lagrange Multiplier approach rather than the Likelihood Ratio statistic proposed by Neyman 

greatly simplifies the calculations.  Polynomials, splines, and the step function of Pearson’s test are 

compared as alternative perturbations to the theoretical uniform distribution.  The extended tests 

have negligible size distortion and more power than standard tests.  The tests are applied to 

competing symmetric leptokurtic distributions with US stock return data.  These are generally 

rejected, primarily because of the presence of skewness.  
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1.  Introduction 

A simplified version of the Neyman (1937) “Smooth” goodness-of-fit test (GFT) is extended 

to adjust for the presence of estimated model parameters.  The effect is to reduce size distortion and 

to increase the power of the test.  As is well known (e.g. Bai 2003), standard tests that do not 

account for the estimation of model parameters tend to under-reject the distribution assumed by the 

null hypothesis. 

 The heavy tails of most financial return series often lead to an easy rejection of the Gaussian 

distribution.   A parametric distribution that is consistent with the data would allow the mean to be 

estimated more efficiently than would a nonparametric procedure.  Furthermore, parametric 

distributions allow out-of-sample extreme tail probabilities to be estimated.  These tail probabilities 

are important for the pricing of options and contingent claims, for Value at Risk calculations, and 

for non-financial applications such as the risk of floods and other extreme events.    

When heavy tails are present, Mandelbrot (1963), Fama (1965), Samorodnitsky and Taqqu 

(1994), and McCulloch (1996) have suggested the use of stable distributions.  Blattberg and 

Gonedes (1974), Hagerman (1978), Perry (1983), and Boothe and Glassman (1987) propose the 

Student t distributions.  Nelson (1991) investigates the generalized error distribution (GED), while 

Praetz (1972) and Clark (1973) implement a mixture of normal distributions.  This paper is aimed at 

developing an appropriate GFT that can work well with all the above distributions.  Although this 

paper assumes identically and independently distributed (i.i.d.) errors, Percy (2006) addresses other 

models including ARCH and GARCH models of volatility clustering.   
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Section 2 introduces a simplified Lagrange Multiplier
1
 (LM) version of the Neyman Smooth 

GFT.  Section 3 extends this test to accommodate estimated parameters.  Section 4 illustrates the 

extended test for the proposed heavy-tailed distributions with stock return data.  Section 5 reports 

on the power of the test to discriminate between the candidate distributions, and Section 6 

concludes.  This paper draws heavily upon Percy (2006), which provides more theory and details 

than are available herein. 

 

2.  A simplified Neyman Smooth GFT with known parameters 

We can develop an LM test for any distribution with known or unknown parameters by first 

constructing an LM test for the uniform distribution.   

2.1.  An LM test for uniformity 

For m perturbation functions  mjzj ,,1),(φ   that are linearly independent, bounded, and 

integrate to zero on the unit interval and a vector of coefficients   m

m 


  ,,1 α , define  

   



m

j

jj zz
1

φ1:;g α , ]1,0[z .          

For α  in a sufficiently small neighborhood N of the origin in 
m
,  α;g   is a probability density 

function, with cumulative distribution function denoted by  α;G  .  This distribution nests the 

standard uniform distribution U(0,1) when .0α     

Consider a random sample   n

nuu 


 ,,1 u .  We wish to test H0: ui ~ i.i.d. U(0,1) vs. 

H1: ui ~ i.i.d.  α;G   with 0α  .  The log likelihood function of interest is  

                                                           
1
 Such tests are also called “efficient score” tests, “score” tests, or sometimes “Rao score” tests in honor of C.R. Rao, 

who first proposed this type of test. 
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and the m×1 score vector of first derivatives with respect to the j’s is 
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When evaluated at the null, this simplifies to 

   
mj

n

i

ij u










 

11

φ;u0s .          (1) 

Letting  α;G~ Z , the Fisher information matrix with respect to the perturbation parameters is 

     ,,1' mjjjjI  ααI  

where  
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At the null hypothesis, this simplifies to  

     
mjj

jj dzzz


 




 

,1

1

0
φφ0I .         (2) 

The LM statistic is then  

      nLM /;; 1
u0s0Iu0s

 .          (3) 

Since the null hypothesis is a single internal point in the set N, the asymptotic distribution of this 

statistic is 
2
 with m degrees of freedom under the null. 
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2.2.  Functional form and basis 

Although any set of linearly independent bounded functions integrating to 0 may be used in 

theory, there are numerical considerations in choosing a basis so that tractable results can be 

obtained.  We investigated polynomials, orthogonal polynomials, splines, and B-splines (Judd 1999, 

Percy 2006).   

For small values of m, the demeaned standard polynomials )1/(1)(φ  jzz j

j  are an 

obvious choice.  For larger values of m, however, these standard polynomials are ill-conditioned for 

the matrix inversion required to compute the Fisher information matrix.  Neyman-Pearson 

orthogonal polynomials are mathematically equivalent but computationally better conditioned in 

this respect.  However, rounding errors still may arise in the evaluation of the score as there is a 

large disparity in the orders of magnitude between coefficients, even for midsize values of m: 

Experience with polynomials derived by truncating [Taylor] series, [especially in their use 

with estimating transcendental functions,] may mislead one into thinking that the use of high 

order polynomials does not lead to computational difficulties.  However it must be appreciated 

that truncated [Taylor] series are not typical of polynomials in general.  [Truncated Taylor 

series] have the special feature that the terms decrease rapidly in size for values of x in the 

range for which they are appropriate. 

 

A tendency to underestimate the difficulties involved in working with general polynomials is 

perhaps a consequence of one’s experience in classical analysis.  There it is natural to regard a 

polynomial as a very desirable function since it is bounded in any finite region and has 

derivatives of all orders.  In numerical work, however, polynomials having coefficients which 

are more or less arbitrary are tiresome to deal with by entirely automatic procedures.  

(Wilkinson 1963, p. 38) 

 

Polynomials have the further drawback that fitting one region better may require fitting other distant 

regions more poorly. 

Cubic splines, which are piecewise cubic functions with discontinuities in the third 

derivative at selected knotpoints, are more pliable and better able to fit a particular interval without 

affecting more distant intervals as much.  Simple spline basis functions can create similar numerical 

problems with the inversion of the information matrix but the so-called B-spline basis solves this 
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issue, while generating the same space of functions.  Thus, for much of the analysis, we used B-

splines as a basis but also investigated orthogonal polynomials with a moderate number of 

parameters.  Splines have some numerical properties that are more desirable than polynomials, 

while the tradeoff in the other properties is not severe. 

The classic Pearson GFT arises as a special case of the LM test when each perturbation 

function is a step function integrating to zero, with discontinuities at m selected points.  Piecewise 

linear and quadratic spline perturbation functions are also considered below.   

The proposed LM GFT is closely related to the Neyman (1937) Smooth test, so named 

because the alternative distributions vary “smoothly” away from the null hypothesized distribution 

rather than with discontinuities as in the Pearson test.  However, Neyman’s test, which he called the 


2
 test (as contrasted with Pearson’s 

2
 test), was based on a likelihood ratio statistic rather than an 

LM statistic and hence required estimating the model both under the null and the perturbed 

alternative.  Furthermore, in order to prevent negative densities, his perturbations were 

exponentiated polynomials, numerically constrained to integrate to zero. 

As noted already by Rayner and Best (1989), the LM simplification of the Neyman test 

employed here only needs to be estimated under the null, a much simpler calculation.  Furthermore, 

since the alternative only needs to be a proper density in a neighborhood of the null hypothesis, 

polynomial or spline perturbations, which are easily constrained to integrate to zero, may be used 

directly, without exponentiation. 

2.3.  LM test for a completely specified distribution 

The LM test for any continuous distribution with known parameters is essentially the same 

as that for the uniform distribution developed above.   
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Consider a random sample   n

nyy 


 ,,1 y .  One would like to test:  H0:  yi ~ i.i.d. 

F(), where F() is a completely specified continuous distribution with density f()=F′(), vs. H1:  yi 

~ i.i.d.   α;FG   with 0α  .  Define  ii yu F .  Then, as is well known, yi ~ F() if and only if 

ui ~ U(0,1).  Under the alternative, the density is      f;Fg α .  The log-likelihood function is 

then  

     



n

i

i

n

i

i yu
11

flog;glog;Llog αyα . 

Since the second summation does not depend on α , the derivatives necessary to calculate 

the LM statistic are identical to those for the test for the uniform distribution.  Thus one can simply 

use the transformed observations ui with the test for the uniform distribution (3).  All tables and 

critical values that are suitable for the test of uniformity are also suitable for a general distribution. 

2.4.  Finite sample properties with a completely specified distribution 

As noted, the LM statistic has a limiting asymptotic distribution that is chi-squared with 

degrees of freedom equal to m, the number of perturbation parameters.  Simulations reported in 

Percy (2006) indicate that for sample size n  30 , m  5, and test size = 0.05, the convergence to 

the limiting distribution is quite rapid.  At the indicated values of m, n, and test size, the 95
th

 

percentile of the simulated distributions was generally within sampling error of the 95
th

 percentile of 

a chi-squared random variable.   
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Cubic Spline Size Distortion (m=6)
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Figure 1.  Size distortion of cubic spline test (m = 6). 

 

Figure 1 shows results of the simulations for 9999 replications with a cubic spline 

perturbation and m = 6.  The solid lines indicate the difference between the theoretical chi-squared 

distribution and the empirical distribution of the simulations.  The dashed lines indicate 95% 

confidence intervals for the quantiles of an empirical CDF of random draws from the chi-squared 

distribution.  Except for very small samples with n = 30, the correspondence is as close as could be 

expected at all quantiles.  See Percy (2006) for illustrations of size distortion for other parameter 

sizes and basis functions. 
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3.  The LM test with estimated model parameters 

We now extend the LM test to the typical situation in which the values of the model 

parameters are not known and so must be estimated.  Our null hypothesis is now H0: yi ~ i.i.d. 

 θ;F  , where F is a continuous distribution with density  θ;f   that depends on the k1 vector of 

parameters θ .  This vector lies in the interior of a convex set Θ , but is otherwise unknown.  The 

Fisher information matrix is assumed to be positive definite and finite for all interior points of this 

set.  Let the maximum likelihood (ML) estimate of θ  under the null hypothesis be θ̂  and set 

  nuu ˆ,,ˆˆ
1 u  where  θ̂;Fˆ

ii yu  . 

For most of the competing heavy-tailed distributions considered here, namely the symmetric 

stable, Student t, and generalized error distributions, the unknowns consist of a location, scale, and 

shape parameter, so that k = 3.  For a mixture of two Gaussian distributions with a common mean, 

two variances, and an unknown mixing probability, k = 4.  More generally, the location of each yi 

could be determined by a possibly non-linear function h(xi;), where xi is a vector of known 

constants or of exogenous random variables and  is a vector of unknown coefficients to be 

estimated by ML.  However, the present paper illustrates the extended test only in cases involving a 

common location parameter. 

 Our alternative hypothesis is now H1:  yi ~ i.i.d.   αθ ;;FG  , with 0α   and  α;G   

defined as above.  The log likelihood is now  

      



n

i

i

n

i

i yy
11

;flog;;Fglog;,Llog θαθyαθ .  

The full score vector  

 
 
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  
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
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is now (k+m)1, but   0y0θsθ ;,ˆ  by the ML first order conditions, while    u0sy0θsα ˆ;;,ˆ   as in 

(1), since 0);(  αg  when 0α  .   

The full Fisher information matrix 

 
   

   












αθIαθI

αθIαθI
αθI

ααθα

θαθθ

,,

,,
,  

is now of dimension (k+m)  (k+m), with   

    
khhhhI


,1

,ˆ,ˆ αθαθI θθθθ , 

    
mjkhjhI




1,1
,ˆ,ˆ αθαθI θαθα  

    
mjjjjI


,1

,ˆ,ˆ αθαθI αααα . 

Letting Z ~   αθ ;;FG  , we have 

             

   
  ,;f/

;f;f

;f;;Fglog;f;;Fglog
E:,ˆ

ˆ

,ˆ

'

θθ

0αθθ

θθ

θ
θθ

θαθθαθ
0θ













































 dzz
zz

ZZZZ
I

hh

hh

hh




                    

             

 
   ,;Fφ

;f

;f;;Fglog;f;;Fglog
E:,ˆ

ˆ

,ˆ

θθ

0αθθ

θα

θ
θ

θαθθαθ
0θ












































 dzz
z

ZZZZ
I

j

h

jh

jh




               

             

    ,φφ

;f;;Fglog;f;;Fglog
E:,ˆ

1

0

,ˆ

dzzz

ZZZZ
I

jj

jj

jj































0αθθ

αα

θαθθαθ
0θ


               

so that    0I0θIαα ,ˆ  as in (2).   
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Using the partitioned matrix inverse formula, the extended LM test statistic becomes 

     

             ./ˆ,,ˆ,ˆ,ˆˆ,

/;,ˆ,ˆ;,ˆ

1
1

1

n

nLM

u0s0θI0θI0θI0Iu0s

y0θs0θIy0θs

θαθθθα









                  

By standard theory, the asymptotic distribution of this statistic under the null is again 
2
 with m 

degrees of freedom.  The subtraction of θαθθθα III
1  inside the inverse increases the extended test 

statistic by just enough to prevent overacceptance of the null hypothesis when û  is used in place of 

u.  

Although  0I  can readily be computed in closed form for polynomial, spline, or step 

perturbation functions, calculation of the remaining information components of the extended LM 

statistic requires numerical integrations that may depend on the distribution in question, its 

parameters, and the form and number of the perturbation functions.  DuMouchel (1975) has 

tabulated  0θIθθ , for the stable distributions.  See Percy (2006) for computational details and tables 

for the distributions and perturbation functions considered here.   

 In the extended test, finite sample critical values depend on the specific model and true 

parameter values.  Simulations reported in Percy (2006) indicate more size distortion than with 

known parameters.  However, size distortion can still largely be ignored, even for relatively small 

sample sizes.   

 

4.  The extended test on stock market returns 

The extended LM test is illustrated in this section using continuously compounded percent 

real monthly returns, including dividends, on the CRSP value-weighted stock market index, during 

the 40-year period from 1/53-12/92 (480 observations), as employed in McCulloch (1997).  Percy 

(2006) also considers the 50-year period ending in 12/2002.  However, volatility clustering is more 
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apparent in the longer series.  Although estimated ARCH or GARCH parameters may be 

incorporated into the extended test, the present paper assumes i.i.d. errors, and hence this section 

uses only the shorter period.   

The extended test was performed with the following symmetric distributions:  (1) Gaussian, 

(2) symmetric stable, (3) Student t with a mean and scale parameter, and (4) the generalized error 

distribution.  We also used various perturbation functions:  a step function that extends the 

traditional Pearson test, Neyman-Legendre polynomials, and linear, quadratic, and cubic B-splines.  

All the splines, as well as the extended Pearson test, used equidistant knotpoints. 

Table 1 reports maximum likelihood estimates under a Gaussian null hypothesis.  Table 2 

reports the extended LM test statistics and asymptotic p values for the hypothesis that these returns 

are Gaussian, with up to twelve perturbation parameters in the alternative hypotheses. 

 

Gaussian ML Estimates

 Estimate Standard Error z-score Probability 

Std. Deviation 4.272 0.138   

Mean 0.555 0.195 2.85 0.0044 

Log L -1378.07    

 

Table 1.   

Gaussian maximum likelihood estimates (n = 480). 
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Lagrange Multiplier Test Statistics 

m Pearson 

Neyman- 

Legendre 

Linear 

Spline 

Quadratic 

Spline 

Cubic 

Spline 

1 3.88 10.51 10.51   

2 4.64 31.75 21.80 31.75  

3 13.85 31.80 28.93 31.78 31.80 

4 20.46 52.50 39.40 47.45 49.81 

5 21.11 53.44 44.82 50.78 52.91 

6 37.84 57.99 47.56 52.38 55.51 

7 38.88 69.68 49.96 55.11 61.62 

8 34.65 74.90 49.83 60.08 69.18 

9 32.39 90.06 51.96 67.93 79.50 

10 31.62 100.98 58.56 75.55 86.55 

11 34.42 103.93 61.32 77.75 88.84 

12 37.27 108.61 68.34 82.20 93.03 

 

Complement of chi square inverse of test statistic 

m Pearson 

Neyman- 

Legendre 

Linear 

Spline 

Quadratic 

Spline 

Cubic 

Spline 

1 0.0490    0.0012     0.0012    

2 0.0983  1.3e-07   1.8e-05  1.3e-07  

3 0.0031  5.8e-07   2.3e-06  5.8e-07  5.8e-07  

4 0.0004  1.1e-10   5.7e-08  1.2e-09  4.0e-10  

5 0.0008  2.7e-10   1.6e-08  9.6e-10  3.5e-10  

6 1.2e-06  1.2e-10   1.4e-08  1.6e-09  3.7e-10  

7 2.1e-06  1.7e-12   1.5e-08  1.4e-09  7.2e-11  

8 3.1e-05  5.2e-13   4.4e-08  4.5e-10  7.1e-12  

9 0.0002  1.6e-15   4.6e-08  3.9e-11  2.0e-13  

10 0.0005  3.5e-17   6.8e-09  3.7e-12  2.6e-14  

11 0.0003  3.0e-17   5.3e-09  4.0e-12  2.8e-14  

12 0.0002  1.1e-17  6.6e-10  1.6e-12  1.3e-14 

 

Table 2.   

LM Test Statistics and p values for Gaussian null hypothesis. 

 

The Jarque-Bera (1987) statistic for i.i.d. normality is 189.19 with this data.  The p value for 

this statistic with the appropriate 2 degrees of freedom is 10
-41

.  Many of the p values in Table 2 are 

zero to several places, but none is as small as for the Jarque-Bera statistic.  Jarque-Bera is designed 

to be sensitive to departures of skewness from 0 and of kurtosis from 3, and is unquestionably the 

best test to use for departures from normality that show up strongly in these moments.  The 
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extended Neyman LM statistic, on the other hand, will be sensitive to other departures from 

normality, depending on the number and type of basis functions, and, with sufficiently large sample 

size and sufficiently large values of m, could eventually detect distributions that were not Gaussian 

even if they had zero skewness and kurtosis equal to 3.  

Drawing attention to the Pearson statistics momentarily, one can see that the Pearson 

statistics with low parameter numbers are not particularly adept at identifying the non-Gaussian 

nature of this data set.  For m = 1, the significance level is 0.049 and for m = 2, the significance 

level is 0.099.  Since Pearson takes no account of where an error resides within the bin to which it is 

assigned, it will often not be very sensitive to departures from the posited distribution, so we 

recommend against use of this statistic whenever the null is a continuous distribution, even when it 

is corrected, as here, for estimated parameters. 

 In Table 3, we estimate the symmetric stable distribution parameters by maximum 

likelihood using the density approximation of McCulloch (1998).  As in McCulloch (1997), the 

estimated stable characteristic exponent  (not to be confused with the perturbation coefficients of 

the preceding sections) is 1.845.  The algorithm fits the natural logarithm of the scale c, so that the 

asymptotic standard errors apply to log c rather than c itself.  Although 1.845 is 2.63 asymptotic 

standard errors from the value of 2 corresponding to a Gaussian distribution, and the likelihood ratio 

(LR) statistic for the hypothesis of normality is 26.66, these statistics do not have their usual N(0,1) 

and 
2
(1) distributions, because 2  is on the boundary of the permissible parameter space.  

Nevertheless, the simulations of McCulloch (1997) demonstrate that the 5% critical value for the 

LR statistic is less than 1.12 for this sample size, and that normality can be rejected with p << .004.  

Table 4 reports the extended LM test of the null that these real returns are symmetric stable, with 

the same alternatives as considered in Table 2.   
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Symmetric Stable ML Estimates

 Estimate Standard Error z-score Probability 

Log scale 0.997 0.040   

Scale c 2.711    

Stable a 1.845 0.059   

Mean 0.673 0.182 3.70 0.0002 

Log L -1364.74    

Table 3.   

Symmetric stable maximum likelihood estimates (n = 480). 

 

Lagrange Multiplier Test Statistics 

m Pearson 

Neyman- 

Legendre 

Linear 

Spline 

Quadratic 

Spline 

Cubic 

Spline 

1 0.68 1.34 1.34   

2 1.74 1.59 1.34 1.59  

3 1.92 6.64 3.38 5.52 6.64 

4 6.91 12.42 7.44 11.27 11.48 

5 4.44 13.77 12.83 14.47 14.50 

6 11.30 14.40 15.62 15.03 14.47 

7 19.67 15.13 16.24 14.61 14.23 

8 24.56 15.22 17.29 15.39 15.50 

9 15.04 18.43 14.08 15.34 17.43 

10 10.59 19.78 17.29 19.65 20.53 

11 17.29 19.78 17.43 20.63 20.18 

12 12.50 19.85 19.28 21.11 20.57 

 

Complement of chi square inverse of test statistic 

m Pearson 

Neyman- 

Legendre 

Linear 

Spline 

Quadratic 

Spline 

Cubic 

Spline 

1 0.4111 0.2478 0.2478   

2 0.4198 0.4521 0.5128 0.4521  

3 0.5892 0.0842 0.3360 0.1377 0.0842 

4 0.1407 0.0145 0.1146 0.0237 0.0217 

5 0.4881 0.0171 0.0250 0.0129 0.0127 

6 0.0794 0.0255 0.0160 0.0200 0.0248 

7 0.0063 0.0344 0.0230 0.0414 0.0473 

8 0.0018 0.0550 0.0273 0.0520 0.0501 

9 0.0898 0.0305 0.1195 0.0820 0.0425 

10 0.3900 0.0314 0.0682 0.0327 0.0246 

11 0.0995 0.0485 0.0959 0.0375 0.0429 

12 0.4066 0.0701 0.0821 0.0487 0.0570 

 

Table 4.   

LM Test Statistics and p values for symmetric stable null hypothesis. 
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Turning our attention to the Neyman-Legendre polynomial tests, the first three tests do not 

reject the symmetric stable distribution at the 5% test size.  However, when we add the fourth basis 

function, we begin to obtain significant rejections.  The first three Neyman-Legendre statistics are 

necessarily identical to the first statistic for the linear, quadratic, and cubic splines, respectively.  

For the cubic spline with more than 3 parameters and therefore at least one internal knotpoint, the 

results are similar to those for the Neyman-Legendre statistics.  The step-function Pearson results 

are far more dependent on m than are the smooth alternatives.   

Tables 5 and 6 report the same tests for the Student t distribution.  Infinite Student t degrees 

of freedom (DOF) correspond to a proper, Gaussian distribution, so the search was parameterized in 

terms of reciprocal DOF rather than DOF directly.   

Tables 7 and 8 report these tests for the GED.  An infinite GED power parameter leads to a 

proper, U(-1, 1) limit, so this search was also parameterized in terms of the reciprocal of the shape 

parameter.   In order for the Fisher information matrix to be finite, it is necessary to restrict the 

power to be strictly greater than 1, so as to just exclude the Laplace distribution.  However, this 

restriction was not binding.  Percy (2006) reports similar test results for a mixture of two Gaussian 

distributions.    
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Student t ML Estimates

 Estimate Standard Error z-score Probability 

Log Scale 1.262 0.054   

Scale c 3.531    

Reciprocal DOF 0.155 0.043   

Deg. of Freedom 6.443    

Mean 0.716 0.182 3.95 7.9e-5 

Log L -1363.72    

Table 5.   

Student t maximum likelihood estimates (n = 480) 

 

Lagrange Multiplier Test Statistics 

m Pearson 

Neyman- 

Legendre 

Linear 

Spline 

Quadratic 

Spline 

Cubic 

Spline 

1 0.13 1.22 1.22   

2 4.46 2.65 2.87 2.65  

3 1.95 8.06 6.39 7.29 8.06 

4 8.53 9.81 7.44 9.74 9.51 

5 4.70 10.48 11.51 11.50 11.07 

6 15.82 10.49 13.33 11.39 10.55 

7 22.74 11.79 13.56 11.02 10.77 

8 20.53 13.88 14.71 12.90 13.70 

9 18.54 18.25 12.09 13.13 15.96 

10 10.62 18.37 13.95 17.48 19.30 

11 15.56 18.53 16.03 19.96 19.73 

12 15.61 19.17 16.87 19.38 19.27 

Complement of chi square inverse of test statistic 

m Pearson 

Neyman- 

Legendre 

Linear 

Spline 

Quadratic 

Spline 

Cubic 

Spline 

1 0.7163 0.2701 0.2701   

2 0.1077 0.2652 0.2383 0.2652  

3 0.5826 0.0449 0.0942 0.0632 0.0449 

4 0.0739 0.0438 0.1143 0.0451 0.0496 

5 0.4542 0.0627 0.0421 0.0423 0.0499 

6 0.0148 0.1056 0.0381 0.0769 0.1032 

7 0.0019 0.1077 0.0597 0.1379 0.1489 

8 0.0085 0.0848 0.0651 0.1153 0.0898 

9 0.0294 0.0324 0.2085 0.1569 0.0676 

10 0.3882 0.0490 0.1754 0.0644 0.0367 

11 0.1584 0.0701 0.1400 0.0458 0.0492 

12 0.2095 0.0846 0.1544 0.0797 0.0823 

Table 6.   

LM Test Statistics and p values for Student t null hypothesis. 
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Generalized Error Distribution (GED) ML Estimates

 Estimate Standard Error z-score Probability 

Log Scale 1.537 0.039   

Scale c 4.651    

Recip. power 0.712 6.4e-4   

GED power 1.404    

Mean 0.713 0.180 3.96 7.6e-5 

Log L -1367.76    

Table 7.   

GED maximum likelihood estimates (n = 480) 

 

Lagrange Multiplier Test Statistics 

m Pearson 

Neyman- 

Legendre 

Linear 

Spline 

Quadratic 

Spline 

Cubic 

Spline 

1 0.26 0.01 0.01   

2 4.09 0.02 0.80 0.02  

3 1.63 8.07 7.11 8.32 8.07 

4 6.21 19.25 13.41 18.13 18.56 

5 6.74 19.42 21.19 20.05 19.74 

6 17.47 19.46 21.20 19.36 19.18 

7 22.88 19.76 21.47 20.10 19.51 

8 20.36 19.99 22.52 21.23 20.95 

9 18.21 24.53 19.86 24.96 27.67 

10 16.54 27.35 23.83 28.62 28.95 

11 19.46 30.89 26.41 30.17 29.30 

12 23.22 31.00 27.04 29.07 29.00 

 

Complement of chi square inverse of test statistic 

m Pearson 

Neyman- 

Legendre 

Linear 

Spline 

Quadratic 

Spline 

Cubic 

Spline 

1 0.6134 0.9076 0.9076   

2 0.1295 0.9917 0.6701 0.9917  

3 0.6519 0.0445 0.0683 0.0398 0.0445 

4 0.1839 0.0007 0.0094 0.0012 0.0010 

5 0.2410 0.0016 0.0007 0.0012 0.0014 

6 0.0077 0.0035 0.0017 0.0036 0.0039 

7 0.0018 0.0061 0.0031 0.0054 0.0067 

8 0.0091 0.0104 0.0040 0.0066 0.0073 

9 0.0329 0.0035 0.0188 0.0030 0.0011 

10 0.0852 0.0023 0.0081 0.0014 0.0013 

11 0.0533 0.0011 0.0056 0.0015 0.0020 

12 0.0260 0.0020 0.0076 0.0038 0.0039 

Table 8.   

LM Test Statistics and p values for GED null hypothesis. 



 18 

 

The most easily rejected of these three distributions is the GED.  These distributions have 

relatively thin tails compared to the others.  As a general rule, the presence of more than the 

expected value of outliers (or even one extreme outlier) often allows for the rejection of null 

hypotheses of thin-tailed distributions, while the absence of outliers does not allow for as easy of a 

rejection of null hypotheses of heavy-tailed distributions.  Of course as the sample size grows, 

eventually a test for a heavy-tailed distribution will decrease its p value if outliers do not eventually 

appear. 

For purely computational reasons, the present paper considers only symmetric distributions.  

Although all three symmetric distributions considered in the present section encounter frequent 

rejections (with the notable exception of the Student t for m between 6 and 9), it is likely that many 

of these rejections would be reversed if symmetry were not imposed.  The numerical approximation 

of Nolan (1997) permits skew-stable distributions to be fit by ML, while the Student t distribution 

can be generalized to incorporate skewness in a natural way (Kim and McCulloch 2007).  It is also 

possible to skew the GED, albeit in an ad hoc manner, simply by expanding the horizontal axis on 

one side of the origin while compressing it on the other.  

With limited data, densities that are similar over much of their support cannot be 

distinguished from one other very easily.  This does not allow one to make very strong statements 

about the extreme tail probabilities, where the densities may differ considerably.  Although this data 

set has only 480 monthly returns, 40 years of daily returns would yield about 10,000 observations.  

When daily data is used, however, the returns often become less independent and less identically 

distributed since there is more apparent volatility clustering, day-of-the-week effects in both mean 

and scale, holiday effects, end-of-year effects, and other complications.  However, the extended 
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Neyman Smooth GFT developed here allows these additional effects to be estimated without size 

distortion. 

 

5.  Size distortion and power with financial data parameter values 

This section investigates criteria for determining the best test to use in terms of size 

distortion and power against the symmetric leptokurtic alternatives considered above, and also a 

mixture of two normals with a common mean.  With the extended test, size distortion and power 

may depend on both the distribution and true parameter values in question.  For this purpose, 

following Percy (2006), we use parameter estimates for percent log real monthly returns for the 50-

year period January, 1953, through December, 2002.  The ML parameter estimates for this longer 

period were as follows:   

Symmetric stable:    =  1.862, log scale = 1.024,  0.585 

Student t:  degrees of freedom = 6.864, log scale = 1.293, mean = 0.641 

Generalized error distribution: power = 1.419, log scale = 1.568, mean = 0.670 

Mixture of two Gaussians:  probability of smaller standard deviation = 0.906, 

   log(smaller st. dev.) = 1.308, log(larger st. dev.) = 2.125, mean = 0.594 

These values were used in simulations for both null hypotheses and data-generating processes.  It is 

important to note that the conclusions to be drawn using these parameter values may not be 

applicable with other values. 

The size distortion and power against each of the other distributions considered were 

investigated for each of the four leptokurtic distributions.  All sizes and powers are based on 

simulations using 1000 samples, described in more detail in Percy (2006).  All data is generated by 

one of the four hypothesized distributions with the indicated parameters.  There are two test sizes 
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investigated for each scenario, 0.10 and 0.05.  From 1 to 20 basis parameters are tested, or 3 to 20 

for the cubic splines. 

 Six sample sizes were considered: n = 32, 100, 316, 1000, 3162 and 10,000 (10
k
, k = 

3
/2 , 2, 

5
/2 , 3, 

7
/2 , 4).  We tested the size distortion for each extended goodness-of-fit test and did the same 

using conventional tests without the adjustment for estimated parameters.  This produces 18 power 

tests per null hypothesis, based on 6 possible sample sizes with 3 possible alternative hypotheses.  

For each category there is a size-adjusted power for the corrected tests and non-adjusted powers for 

both the corrected tests and the conventional tests. 

Preliminary tests indicated that the Neyman-Legendre polynomial basis and the Cubic 

Spline basis generally outperformed the other bases investigated (Pearson, the Quadratic Spline and 

the Linear Spline).  Accordingly, only those two bases are compared here. 

5.1.  Size distortion 

There is tremendous size distortion with the uncorrected conventional tests in every instance 

for every value of m.  This distortion does not go away as the sample size increases from 32 to 

10,000.  It diminishes somewhat as the number of basis parameters increases, but this is still not 

very helpful.  The distortion is, as expected, in the direction of over-acceptance. 

Figure 2 illustrates the size improvement from the extended test for the symmetric stable 

distribution with sample size 316 and test size 0.10.  It shows that the size of the extended test lies 

mostly within 95% confidence limits of the intended size, while that of the conventional tests lies 

completely outside this interval.  This example is typical of the full set of figures reported in Percy 

(2006).  For the corrected tests, there is some size distortion for smaller sample sizes, but generally 

much smaller than with the conventional tests.  This size distortion vanishes, within sampling error, 

for moderate sample sizes.   
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Figure 2.   

Size Improvement due to Extended Test, symmetric stable null, n = 316, test size .10, 

with 95% CI bracketing nominal test size. 

 

For the mixture distribution and as few as 100 observations, with up to m = 6 perturbation 

parameters, the extended test size distortion is undetectable.  For 316 observations and the level 

0.10 test, the results are just barely in the low end of the confidence interval for most values of m.  

For 1000 and more observations, there is no significant distortion.  Distortion gradually disappears 

for the stable null from n = 316 to 1000 as well, although it is small for smaller sample sizes with 

small numbers of basis parameters as well.  For Student nulls, distortion dies out at only 100 

observations.  GED nulls require around 316 observations. 

 

5.2.  Power and recommendations 

The over-acceptance caused by the size distortion in the conventional tests contributes to 

poor power against the chosen nulls.  With the conventional tests, fitting the model parameters 
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biases against rejecting even false hypotheses.  Hence, practitioners may all too often mistakenly 

conclude that, since their test does not reject an alternative hypothesis, they are justified in 

accepting the validity of the assumptions in their study.  The uncorrected tests have power even less 

than the test size for the largest sample sizes! 

The corrected tests do have more power than the conventional tests.  However, it is quite 

difficult to tell the leptokurtic distributions under consideration from one another when the sample 

size is small, even with the corrected tests.  When the sample size is high enough for there to be 

reasonable levels of power (4 to 5 times the test size), there is negligible size distortion.  However, 

there are often significant power gains to be made by adapting the functional form and number of 

perturbation parameters to the specific null in question.  Accordingly, recommendations are made 

below that are specific to the null, yet robust to the actual data-generating distribution, using 

parameters as fit above to stock market data.   

With a stable null:  a GED distribution can start to be detected with as few as 316 

observations.  A pattern emerges which has a power peak at only m = 2 polynomial test parameters, 

or 3 for the cubic spline.  This power peak also works well for detecting a Student distribution.  The 

mixture of normals, with its extra parameter, is quite difficult to identify, requiring more than 3000 

observations even to get modest 30% power levels.  At 10,000 observations the most power comes 

with a large number of parameters.  But at 10,000 observations, any value of m (more than 2) will 

have the same (100%) power levels for the GED and Student distributions.  At this sample size, it is 

recommended to use the cubic spline, perhaps with m = 15 test parameters, because it has fewer 

numerical difficulties than the polynomial as m increases.  See Percy (2006) for graphs illustrating 

these findings.   
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Under a Student t null hypothesis, a stable distribution can be seen almost half the time with 

316 observations.  Almost any value of m greater than 2 will work equally effectively.  GED and 

normal mixtures are still concealed for the most part at this sample size, but a test with 2 or 3 

parameters has the best chance of finding them.  So, if Student t is the null, one may proceed with 2 

or 3 test parameters, regardless of sample size. 

 With a GED null hypothesis, the advisable number is 4 parameters.  Using a basis with only 

three parameters has very low power but there is a tremendous increase at 4, with small increases 

after that. 

With a mixture of two Gaussians as the null hypothesis, there is little power to detect the 

other three distributions, unless one has at least 3000 observations.  The pattern is a bit unusual, 

however, in that higher values of m generally yield more power.  For this reason, the cubic spline is 

recommended here to avoid numerical inaccuracy, with about 15 parameters.  At 10,000 

observations, even with the possible inaccuracies, the test with 8 parameters has fairly low 

distortion levels, so it would be safe to use against the chosen alternatives.  For further discussion, 

see Percy (2006). 

 

6.  Conclusion 

The extended Neyman Smooth test can be used to analyze economic and financial data to 

probe the distribution underlying the generation of the data.  Some parsimonious parametric 

distributions may be found that will aid inferences about levels of and relationships between 

economic variables.  Thus, asymptotically consistent estimates of parameters are possible without 

either presuming normality of error terms or using solely nonparametric techniques. In that regard, 

these new procedures can offer new answers to old questions. 
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 Unlike many goodness-of-fit tests, unknown model parameters can be estimated with the 

extended Neyman tests without prejudicing the tests.  Since these tests rely on maximum likelihood 

techniques, they asymptotically meet the conditions of the Neyman-Pearson lemma against any 

simple alternative hypothesis in its parameter space.  Tests with one-sided alternatives that meet 

these criteria qualify as Uniformly Most Powerful (UMP) tests for arbitrary significance levels. 

Spline models are more tractable than polynomial models with existing double precision 

software, and it does not appear that this tractability is obtained at the cost of lower power in tests of 

interest. 

Size distortion that is present in the conventional tests is lowered considerably with the 

extended tests, even for modest sample sizes.  A related benefit is increased test power.  
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TYPOGRAPHIC NOTES 

 

 The JE may wish to use a double stroke font such as LaTeX Bbold or Blackboard Bold for 

the expectations operator E in the equation following (1), as well as on p. 9.  This is unfortunately 

not available in MS Word Equation Editor.  

 

 Likewise, the JE may wish to use a cursive font such as Script MT Bold (I) for the 

information matrix I in the equation following (1), as well as in (2), (3), and several places on p. 9.  

However, since the identity matrix is not used in this paper, no confusion arises from using I.  

Again, this font is not available in MS Word Equation Editor.   

 

 Every attempt has been made to use bold face for vectors and matrices.  If there is any 

ambiguity, please contact the authors.    

 

 Vectors and matrices, when defined in terms of their elements, are consistently defined 

using large parentheses, as in Simon and Blume, Mathematics for Economists.  A subscript defines 

the range of the subscripts, as requested by Referee 1.  If the JE would prefer a different notation, 

such as square brackets as in Greene’s Econometric Analysis, the authors will be happy to work 

with the production editor on this.    

 


