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Continuous Time Processes with 
Stable Increments 

Benoit Mandlebrot, writing in this Journal in 
1963, set off a burst of interest among financial 
economists in the symmetric stable Paretian dis- 
tribution as a model for price changes. These 
distributions have the convenient and appealing 
property that when two random variables drawn 
from stable distributions having the same charac- 
teristic exponent a are added together, the result- 
ing sum will have the same-shaped distribution, 
though with a different location and a wider 
spread. The normal distribution is a limiting case, 
with a equal to its maximum permissible value, 2. 
When a is less than 2, these distributions exhibit 
the fat tails or leptokurtosis that often charac- 
terizes price movements. This property makes 
them attractive for financial economics, in spite 
of the fact that their variance is infinite, along 
with all absolute moments greater than the ath.1 
Fama and Roll (1968, 1971) have gone to great 
lengths to tabulate the intermediate stable sym- 
metric distributions and to establish simple pro- 
cedures for estimating their parameters, with an 
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1. When a falls as low as 1 the Cauchy distribution results, 
which does not even have a mean. Stable distributions exist 
with 0 < a < 1, but the mean remains undefined. In financial 
applications it is universally assumed that 1 < a S 2. 
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eye to financial applications. DuMouchel (1973, 1975) has developed 
more sophisticated maximum-likelihood techniques for estimating 
these parameters. Stuck (1976) has further investigated the properties 
of the likelihood ratio. 

However, the initial enthusiasm for these intermediate stable sym- 
metric distributions has waned, in part because of their frightening 
properties in a continuous time context. It is well known that if a 
continuous time stochastic process has serially independent stable 
increments, in order for its sample path to be almost surely everywhere 
continuous the increments must be normal, that is, a must equal 2. If a 
is less than 2, any finite time interval almost surely contains an infinite 
number of discontinuities. Such a process does not seem natural, 
because, as Leibnitz (and Marshall after him) argued, "Natura non 
fact saltus." For this and other reasons to be discussed below, 
economists interested in continuous time applications have shunned 
intermediate stable processes in favor of "diffusion processes" that 
have normal increments and therefore continuous sample paths. 

It is our contention in this paper that this aversion to continuous time 
stochastic processes with stable increments is misplaced. The discon- 
tinuities that result are not unmanageable statistically. In fact, the 
sample paths of these processes, in spite of the discontinuities, are 
actually in a sense more "cohesive" than those of diffusion processes. 
Furthermore, the discontinuities are not unreasonable economically. 
Nature may have continuous sample paths, but society, and the ex- 
change economy in particular, is not part of "nature.' '2 On the con- 
trary, it is the interaction of millions of man-made and woman-made 
"unnatural" phenomena. There is therefore no reason why prices 
should not take leaps. 

The Cauchy Distribution 

Let us start with the "worst" case, namely, that of the Cauchy dis- 
tribution, for which a = 1. For median zero and "standard scale" c, a 
random variable with this distribution has the cumulative distribution 
function 

F(x;c)= 1 +? arctan (1) 
2 ~ 

and probability density function 

f(x;c) 1 (2) 
7T({I X)2 

2. This is a point long insisted on by F. A. Hayek (1952, passim). 
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For a Cauchy distribution, the standard scale is exactly the semi- 
interquartile range. The probability that the absolute value of such a 
variable will be less than x is therefore 

G(x;c)= arctan($), (3) 

which has probability density function 

g(x; c) 2 (4) 

Now consider an interval over which the increment in a continuous 
time Cauchy process has standard scale c, which is to say that the 
median absolute increment is c. The standard scale of the sum of two 
Cauchy variables is the sum of their standard scales, so if we divide this 
interval into n equal subintervals, the increment across each subinter- 
val will have standard scale c/n. The probability that all of these 
increments will be less than x in absolute value is G(x; c/l)n. Therefore 
<>(x; c), the probability that the largest discontinuity (in absolute value) 
is less than x, is 

<(x; c) = lim 
G(x; cln)n 

= lim (2 arctan n(5 

Setting v = 1/n, and using L'Ho'pital's rule, we have 

log <>(x; c)= lim n log 2 arctan nx) 

log ( 2 arctan x) lim v v 

v-->O 

lim d 12 x 
=imdlog ( arctan 

vet>o dv T v 

- lim (2/7T){1/[1 + (x/vc)2]}(-x/cv2) 
v-eO 2/i arctan x/vc 

The denominator of this expression goes to unity, so 

log(D(X; c) lim -2x log < x c)=v->O vTC[V2 + (x/c)2] 

_ -2c 

aX 

whence 

<)(x; C) = ev(2c1lx). (6) 
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We see from equation (6) that the fractiles of the largest discontinuity 
in an interval are proportional to the standard scale of the total Cauchy 
increment. In fact, the median largest discontinuity is 0.918c, so that 
the median largest discontinuity is actually smaller than c, the median 
absolute total Cauchy increment over the interval.3 

We can also show that the fractiles of the kth largest discontinuity 
fall toward zero as k becomes large. We again divide the entire interval 
into n subintervals and consider the distribution of the jth largest 
increment. The probability that some j-1 of the n increments will be 
larger than g is [1 -G((; c/n)]i-1. The probability that all the others will 
be smaller than g is G((; cln)n-j+1. The probability that the largest of 
these others is between g and + ? dl is dGn-j+, - (n-i ?+ )Gn-igdt. 
There are (jAt) ways in which we can select the j-I intervals in 
which the j- I largest increments occur. Therefore the probability that 
the jth largest increment is less than x is (.!n,) 1 X (l-G)j -dGn-j+l 
and .V'j'(x; c), the probability that the jth largest discontinuity is less 
than x, is 

ni n j-1)J @CIil(X c) = (I ( ~ (-GVj-1dGn-j~l. (7) 

Now consider the difference 

Ai+= (j+1) - )(j) (8) 

_ lim 
j ) u 

(1-G)jdGn- j -- (1-G)j-idGn-i+l1 (9) 

Performing integration by parts on the first integral in (9) with u - 

(1 -G)V and dv = dGn-js we have 

=1 1oo (y! [(I -GIPGn - (1 -G)j-1(-j)Gn-igdj 

- (I -)! ( -G)- 1(n -j+ )Gn-Jgd} 

- 1 lim (n() (I-G)jGn-i (10) 
j! n-0oo 

? [jn(i) - jn('1) (n -j+ 1)] (1 -G)j-1Gn-igd} 

- I lim [n(i)(1-G)iGn-j + 0], 

j! n-->oo 

since (n-j+1)n(j-)1 = n(). Now, from (5) and (6), 

lim Gn-j = lim Gn = e-(2clvx) (11) 
n--oo n-0oo 

3. It can be shown that the limit as x approaches infinity of the ratio (1 -G)I(l -D) is 
unity. Thus, an unusually large total Cauchy increment consists of a comparably large 
largest single discontinuity. 



Continuous Time Processes 605 

Furthermore, for v = 1/n, 

lim (n -i)(1-G) =lim n[Il -G(x; c/n)] 
n-eoo n--oo 

limr 1-G(x; vc) 
v->O v 

Veto do [1-G(x; vc)] (12) 

lim 2_9 1 -xA 
v ->O V IT)1 + (x/vC)2 (V2C) 

2 lim x 
i7T v-->O p2 ? X21C 

_ _c 

2c 
OTX 

Therefore, 

= il! (2c/7ix)j e-(2c1Trx) (13) 

Given the definition of A,+, in (8), we have 
k-1 

D(k)(X; c) = <>(X; C) + Ei+1 
j= 1 

k-i (14) 
= E t 4l! (2c/lx)j e-(2cl7TX)( 

Thus, the distributions of the second and third largest discontinuities 
are 

?(2)(X; C) = (I + 2c )e-(2clx) (15) 

and 

?(D3)(X; C) = 1 + ? + 1 ( + ) le-(2clvx), (16) 

which have medians 0.379c and 0.238c, respectively. The distributions 
of G, qD, (2), and V(3) are shown in figure 1. 

Equation (14) has the important implication that 

li 
((k) (X ;c = e2c1Tvx e-(2c1Tvx) (7 kaz-oo _ ,(17) 

= 1, 

for all x > 0. This equation demonstrates that even though there are, 
with probability 1, an infinite number of discontinuities on any interval, 
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they vanish in size. Furthermore, since c is proportional to the length 
of the interval, the size of the discontinuities we expect to find is also 
proportional to the length of the interval, and therefore they go to zero 
as the length of the interval goes to zero. Thus the continuous time 
Cauchy process is everywhere almost surely continuous, even though 
it is not almost surely everywhere continuous. To illustrate this distinc- 
tion, suppose we throw a countable infinity of darts at a board. Al- 
though the darts will not (with probability 1) hit any particular point, 
they will (with probability 1) hit some point in any region with positive 
area; in fact, an infinite number of points. Although any point chosen 
randomly in time is almost surely not a discontinuity in the process, 
it is almost surely a limit point of discontinuity points, but whose 
jumps almost surely get smaller and smaller, approaching zero, as the 
point in question is approached. There are an infinite number of points 
for which this is not true, but they form a set of measure zero. 

Figure 2 shows a computer-generated zero-median Cauchy random 
walk with small time increments, approximating continuous time. The 
unit time interval indicated was divided into 1,000 increments. 
(Equations [5] and [7] for] = 2 and 3 were found to converge well by n 
= 1,000.) For each time increment a pseudorandom number was gener- 
ated and transformed in accordance with (1) to produce a Cauchy 
random variable. The standard scale c for each drawing was set equal 
to 1/1,000 so that the median cumulative Cauchy increment at the end 
of the unit time interval is unity in terms of the units indicated on the 
vertical axis. Only every tenth point was actually plotted in figure 2. 

The three largest "discontinuities" in absolute value were -1.308, 
0.516, and -0.147, at t = 0.941, 0.992, and 0.115, respectively. (Recall 
the median values to be expected were 0.918, 0.379, and 0.238.) Their 
size fell off quickly, with only seven of the 1,000 individual drawings 
greater than 0.100. The total cumulative Cauchy increment over the 
entire unit interval was -1.020, not far in absolute value from the 
median to be anticipated of 1.000. Most of this increment is due to a 
few of the largest discontinuities. The three largest sum algebraically to 
-0.940, and the seven largest to -1.1534. 

The Intermediate Symmetric Stable Case 

Figure 2 does not much resemble a price series, and indeed few propo- 
nents of nonnormal stable distributions believe that a is as low as 1 in 
economic applications. Roll (1970, pp. 70-71) does find a few cases 
where his best estimate of a is 1.00 in the context of interest rate 
movements, but most of his estimates are in therange 1.2-1.5. 

There is no simple formula like (1) for the cumulative distribution 
function for an intermediate symmetric stable random variable. How- 
ever, Fama and Roll have calculated these distributions by indirect 
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FIG. 2.-A Cauchy process (a = 1) with small increments approximating 
continuous time. After 1.0 time unit, the standard scale of the cumulative 
increment is indicated by one unit on the vertical scale. 

means, and have tabulated the results for several values of a (1968, pp. 
820-21). 

Figure 3 shows a "continuous time" computer-generated symmetric 
stable random walk with characteristic exponent 1.5. In order to make 
figure 3 comparable in scale with figure 2, the standard scale of each of 
1,000 increments was set equal to 1,000-11.5 . Because of the way the 
standard scale accumulates, this makes the standard scale of the total 
cumulated stable increment just equal to 1.000 in terms of the units 
shown on the vertical axis. (For a = 1.5, the median absolute incre- 
ment is only 0.969 times the standard scale rather than exactly 1.000 as 
with the Cauchy, but this discrepancy is negligible for our present 
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FIG. 3.-A stable process (a =1.5) with small increments approximating 
continuous time. After 1.0 time unit, the standard scale of the cumulative 
increment is indicated by one unit on the vertical scale. 

purposes.) Again, only every tenth point of the 1,000 underlying points 
is actually plotted. 

In this case the three largest "discontinuities" were -0.478, 0.354, 
and -0.210. Since the same seed was used for the random number 
generator, these occurred at the same points in time, namely, 0.941, 
0.992, and 0.115. Fourteen of the 1,000 random increments were 
greater than 0. 100, as contrasted with only seven'in the Cauchy case.4 
The total increment is -0.457, whose absolute value is only the 28.9th 

4. It was necessary to extrapolate somewhat from the Fama-Roll table to obtain our 
value for the largest "discontinuity" in fig. 3. The figure is nevertheless adequate for 
illustrative purposes. 



610 Journal of Business 

percentile of the distribution of absolute increments with unit standard 
scale. In spite of using underlying "events" with exactly the same 
probabilities, we end up with a different fractile when we add up the 
1,000 increments, because the stable 1.5 distribution produces bigger 
increments for the medium-likelihood events and relatively smaller 
increments for the highly unusual events. 

Figure 3 looks far more like an economic time series than figure 2. 
Even though it is "full" of discontinuities, most of them are quite 
small, and even the large ones do not offend the eye. It does a lot of 
wandering that is not due to the large discontinuities. The three largest 
discontinuities here sum (algebraically) to -0.324, and the 14 largest to 
-0.530. Yet the process drifts as high as 0.885 and as low as -0.913, a 
total spread of 1.798. 

Even though the cumulative distribution function Fa(x; c) for inter- 
mediate symmetric stable distributions is not known, we can derive the 
distribution 'Fa(x; c) of the largest discontinuity that occurs in an 
interval over which standard scale c accumulates, using only what we 
know about how the standard scale accumulates. It can be shown from 
the (known) characteristic function for stable symmetric distributions 
that when two such independent variables having the same characteris- 
tic exponent a are added together, the standard scale of the sum, raised 
to the a power, is the sum of the a powers of the standard scales of the 
two variables added. By extension to continuous time, if co is the 
standard scale that accumulates in 1.0 time units, the standard scale 
after t time units will be 

c(t) = cotu/a. (18) 

This rule is illustrated in figure 4 for a = 1 (Cauchy), 2 (normal), and 
1.5, where the standard scales are chosen so that in each case unit 
standard scale accumulates after one time unit. 

Consider a process with standard scale c after one time unit. After n 
time units, it will have standard scale nilac, so the probability that the 
largest discontinuity in n time units will be less than x is 'Fa(x; n/lac). 
However, this probability is also the nth power of the probability 'Fa(x; 
c) that the largest discontinuity in each one-unit time increment is less 
than x. Furthermore, Fo(x; c) and therefore GO(x; c) and 'Fa(x; c) are 
homogeneous of degree zero in x and c. Therefore ao(xn-l10; c) = (O, 
(x; nl/ac) = 'IOa(x; c)y. Similarly, by dividing the n time units into m 
equal intervals, we have 

(Fa(kr-l/; c) = Fa(X; C)r, (19) 

for any positive rational r = n/m. By continuity, (19) is also valid for 
any positive real r, whether rational or not. Setting A = r-/a, we have 

log Fa(Xx; c) = X- log Fa(X; c), X > 0. (20) 
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FIG. 4.-The standard scale c of the increment that accumulates over an 
interval At in length, given unit standard scale after 1.0 time unit, for Cauchy, 
stable 1.5, and normal processes. 

Equation (20) states that the logarithm of D,, is homogeneous of degree 
-a in x, which implies, that it must have the functional form 

log 'Fa(x; c) = log (D c-; 1) = -k,(x/c)-a (21) 

for some (necessarily positive) constant ka, dependent on a. Therefore 
the probability that the largest discontinuity in an interval with stan- 
dard scale c is less than x must have the functional form 

Fa(x; c) = e-ka(clx)a 5 (22) 

5. The distribution in (22) is a log gompit. Gray (1970) uses it as a functional form to 
describe military enlistment rates as a function of military pay relative to civilian pay. 
The gompit distribution exp [-a * exp (-bx)] for positive a and b is named after a Mr. 
Gompertz. Cf. also the Gumbel distribution. 
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We know from (6) that ki = 2/v. Furthermore, since a normal 
continuous time process is almost surely everywhere continuous, we 
must have 'F2(x; c) = 1, x > 0, so that k2 = 0. Intermediate values of k., 

may be calculated using the formula 

Da(x; 1) lim G,(x; n-lVa)n 
n-->oo 

- lim Ga~xnl/a; 1)~, (23) 

=nrim oo (xnlla-; lyn, 
n-ook 

where 

k,= -logF (1; 1) 

_ -lim (24) = rim n log Ga(nl/a; 1), 

in conjunction with the lead term of Bergstrom's asymptotic expansion 
for the stable cumulative distribution function (Fama and Roll 1968, p. 
819; DuMouchel 1973, p. 471): 

1 _a__ + ( -a),X -X F,(x; 1) = I - -FI (a) sin ( + O(x-2a) X-ox. (25) 
7T2 

The order operator O(x-2a) indicates an unspecified functionf(x) such 

that lim [f(x)/x-2a] is bounded. Equation (25) implies that Ga(nl/t; 1) = 
x-o 

1 -2 F (a) sin 7r2 n-1 + O(n-2), so that 

ka n 2 im (a) sin( a) - O(n-1) 

= 
2 (a) sin(7). (26) 

Table 1 tabulates selected values of ka, employing Dwight's tabula- 
tion (1941, pp. 208-9) of the gamma function. Since F(1) = F(2) = 1, 
and since the gamma function does not drop below 0.8856 on the 
interval (1, 2) our constant behaves very much like the sine function. 
Also indicated are the median x0.5 and the ninety-ninth percentile xO.99 
of 'Fa(x; 1), computed by inverting (22). We see from table 1 that the 
median largest discontinuity declines monotonically as the character- 
istic exponent increases. Furthermore, the a exponent in (22) implies 
that the distribution will be more concentrated about its median the 
higher a is. Therefore the ninety-ninth percentiles fall off even more 
rapidly than the medians. 

Equation (22) has two ready implications that help one understand 
the nature of the discontinuities. Let co be the standard scale of the 
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TABLE 1 Selected Values of ka and Fractiles of D Lf 

a k,, X.5 X.gg 

1.0 .6366 .918 63.34 
1.1 .5982 .875 41.05 
1.2 .5559 .832 28.34 
1.3 .5091 .789 20.48 
1.4 .4570 .743 15.28 
1.5 .3989 .692 11.64 
1.6 .3344 .634 8.94 
1.7 .2626 .565 6.82 
1.8 .1832 .478 5.02 
1.9 .0958 .353 3.28 
1.95 .0489 .257 2.25 
1.99 .0100 .119 1.00 
1.999 .0010 .038 .32 
2.0 0 0 0 

total stable increment that accumulates by the end of 1.0 time units. 
Substituting (18) into (22), we find that the probability that no discon- 
tinuity greater than xo will have occurred in t time units is given by the 
exponential distribution, with average rate of occurrence of discon- 
tinuities larger than xo equal to ka(C (/xo)a: 

'I~jxojc (t)] = e-kdco/xo)at. (27) 

Therefore the appearance of discontinuities larger than the threshold xo 
is governed by a Poisson-driven process. 

We can also find the distribution of the size of these Poisson-driven 
"important" discontinuities. From (22) we can easily show that the 
probability that the largest discontinuity in an interval with cumulative 
standard scale c is smaller (in absolute value) than x, given that it is 
larger than xo, is 

e-kdc/x)a -e-kdc/xo)a (28) 
1 - e-kac/xo)a 

This formula is complicated by the possibility that there may be more 
than one discontinuity greater than xo in the interval. Note, however, 
that every discontinuity greater than xo is the only discontinuity larger 
than xo, for some sufficiently short time interval. Therefore, in order to 
find the distribution of a single discontinuity larger than xo, we merely 
take an interval so short that c, in accordance with (18), goes to zero. 
Taking this limit in (28) with the help of L'Hopital's rule, we find that 
the distribution of single discontinuities larger than xo is given by the 
simple formula 

(29) 
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for x greater than x0, and by zero for x less than x0. This is a Pareto (not 
to be confused with Paretian stable) distribution which, as is well 
known, has expected value a xo /(a - 1). 

The Normal Case 

Figure 5 shows a quasi-continuous time stochastic process with normal 
increments. Each of the 1,000 increments was given a standard scale of 
1/1,0001/2, so that the total standard scale at the end of the unit time 
period would be unity. Note that for a normal distribution the standard 

1.0 

.~~~~. 
*~~~~~~~~~~~ .-0 

time 

-1. 0 

FIG. 5.-A normal process (a =2) with small increments approximating 
continuous time. After 1.0 time unit, the standard scale of the cumulative 
increment is indicated by one unit on the vertical scale. 
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scale c equals the standard deviation o- divided by the square root of 2 
(i.e., c2 is half the variance). A little over half, 52.04% to be more 
precise, of the density lies within c units of the mean, so the standard 
scale almost exactly equals the old-fashioned "probable error," or 
semi-interquartile range. We standardized figure 5 in terms of this 
standard scale rather than in terms of the more familiar standard 
deviation in order to make it readily comparable with figures 2 and 3. 
Again, only every tenth point is actually plotted here. 

Of the 1,000 increments making up this random walk, the three 
largest were -0.156, 0.145, and -0.128, again at t = 0.941, 0.992, and 
0.115. Thirty of the 1,000 increments were greater than 0.100, com- 
pared with 14 for the intermediate stable process and seven for the 
Cauchy process. The increments decline much more slowly in size; 87 
are greater than 0.080, compared with 25 for the intermediate stable 
and only nine for the Cauchy. 

The Economic Appeal of Stable Processes 

Comparing figures 2, 3, and 5, we see that the intermediate stable and 
Cauchy processes, in spite of their discontinuities, seem in some sense 
to be more cohesive than the normal. Except at the big discontinuities, 
the points stick together better than they do in the normal process, 
which appears fuzzy. This is because of the way the increments ac- 
cumulate, as indicated already in figure 4. We see from this figure that, 
for multiples of the unit time interval, the smaller a is, the faster the 
standard scale of the accumulated increments goes to infinity, so in that 
sense the Cauchy and intermediate stables are more poorly behaved 
than the normal. But the same " 1/a" rule implies that when we con- 
sider shorter and shorter intervals they are actually better behaved; the 
smaller a is, the faster the standard scale of the subincrements goes to 
zero. This implies that as the length of a given time interval goes to 
zero, the probability of a given size stable increment eventually be- 
comes smaller than the probability of the same-sized normal incre- 
ment. This is why the nonnormal processes seem-and actually are in 
this objective sense-more cohesive. Furthermore, this cohesion is 
actually greater the further from the normal case we go. We are still left 
with the discontinuities. But they are, for any given point, events with 
probability zero. In spite of the large size of a few of them, they do not 
interfere with cohesion, because of the rapidity with which the distribu- 
tion of the kth largest one converges on zero as k increases. 

The discontinuities are actually appealing in their own right, for a 
price series. We must consider first that transactions prices are not 
really defined in continuous time, since only a finite number of transac- 
tions take place in any time interval. Buying and selling offers, on the 
other hand, do exist continuously in time, so by a "continuous time 
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price series" we must mean a bid or an asked or a bid-asked-mean price 
offer series, rather than an actual transaction price series.6 However, 
these offers are, in fact, discontinuous. When an extremal offer is taken 
up, withdrawn, or supplanted by a better offer, the "price" of the 
security or commodity in question changes discontinuously the instant 
the alteration occurs. Most of these discontinuities are very small, but 
then so are almost all of the discontinuities in a stable process. Occa- 
sionally some important news arrives, causing a larger discontinuity. 

One of the foremost advocates of normal increment diffusion pro- 
cesses, Robert C. Merton, has pointed out in a recent paper (1976) that 
the continuity of a pure diffusion process is actually one of its draw- 
backs. He suggests that financial models introduce discontinuities by 
adding to a background diffusion process a Poisson-driven process that 
provides occasional discontinuities at irregular intervals. We have two 
reservations about this procedure. First, it does not provide the inher- 
ent cohesion of an intermediate stable process. And second, it requires 
a much more complicated specification than does a pure Paretian 
process. Merton's specification requires five parameters at the 
minimum: a mean drift per unit time and a variance per unit time for the 
diffusion process, an average frequency for the Poisson process that 
times the discontinuities, and finally a mean and variance for the 
discontinuities themselves. A continuous time stable process, on the 
other hand, requires only three parameters: an average drift per unit 
time, a standard scale at the end of a unit time interval, and a character- 
istic exponent. At the same time, it preserves the attractive property of 
Merton's compound hypothesis that there will, with probability 1, be a 
little bit of change during any positive time interval, no matter how 
short. 

If we were to set the threshhold x0 in equations (27) and (29) low 
enough, we could approximate the stable process arbitrarily closely as 
just the sum of the "important" jumps greater than x0 which, as we 
have demonstrated above, can be regarded as constituting a special 
case of the class of Poisson-driven processes that Merton describes. 
Note, however, that the frequency of the stable-induced jumps and the 
shape of the distribution of these jumps are simultaneously determined 
by the underlying stable process, whence the greater economy of 
parameters. 

The Feasibility of Arbitrage 

It is sometimes argued that the discontinuities and infinite variances of 
a stable process rule out the practicality of arbitrage, since it is actually 

6. For the same reason, transaction prices are unsatisfactory when we need to estab- 
lish simultaneous prices of different securities, as, for example, to estimate the term 
structure of the interest rates (see McCulloch 1971, pp. 20-21). 
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impossible to buy and sell simultaneously in two markets. In practice 
an arbitrageur ascertains the price in one market, makes a transaction 
in a second market, and then quickly returns to the first market to close 
out his position. He is speculating a little but nevertheless differs from 
a true speculator in that he closes his position so quickly that he can 
rely on his actual closing price in the first market being "virtually the 
same" as the price he originally ascertained. This argument maintains 
that a continuous sample path (and therefore a normal process) is 
necessary to make this operation practical. In fact, however, no arbi- 
trageur can act with infinite speed to take advantage of the actual 
continuity of a normal process. The sort of problem that really con- 
fronts him is whether he can act fast enough so that the probability is 
very high that the price in the first market will not have moved by more 
than just a little bit. Because of the greater cohesion of stable pro- 
cesses, the speed necessary is actually less for a stable process than for 
a normal process. Even though a normal process is everywhere con- 
tinuous, there is no limit to how far the price can move in 30 seconds, 
say. In fact, for most of the sizes of change that are ever likely to be 
observed, a given-sized normal increment will have a higher probabil- 
ity. It is only for exceedingly large (and rare) rates of change that the 
stable assumption predicts higher probabilities. But then there actually 
are, in the real world, instants when news of war or assassination 
reaches the trading floor, and prices move by 5% or 10%, if trading is 
not halted altogether (an infinite change in price!).7 

Consider the stable and normal processes of figures 3 and 5. There 
are roughly 1,000 business hours in a ?2-year period, so we can con- 
sider the time unit as a "?l2-year" and each of the increments as an 
"hour" of trading. Suppose that in this market the median absolute 
price change to be anticipated over 6 months is 10% one way or the 
other. In the stable process, there was 1 hour in which the price moved 
by 4.78% but only 14 hours in which it moved by more than 1.00%. In 
the normal process the largest single hourly change was only 1.56%, 
but there were 30 hours in which the price changed by more than 
1.00%. There were only 13 hours in the entire 6-month period in which 
the normal price did not change by more than the stable price. The 
"continuities" of the normal process are almost always larger, for all 
practical purposes, than the discontinuities of the stable process. In 
which market is it easier to perform arbitrage? Which seems more 
realistic? 

7. Mandlebrot (1963, p. 417) interprets the discontinuities as spontaneous changes in 
price that leave supply and demand behind and cites them as justification for closing 
markets when the price changes by more than a certain amount. I would, rather, interpret 
them as discontinuous shifts in supply and/or demand that take the price with it. Closing 
the market simply aggravates the unpredictability of the terms on which the security or 
commodity can be bought and sold, since it means one cannot sell for any price above 
zero or buy for any price below infinity. 
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Log-Stable Processes 

One of the most inconvenient implications of a stable process as a 
model for movements in a speculative price is that if the logarithm of 
the price has stable increments (a natural assumption to keep the price 
from ever going negative), the expected value of the price itself at any 
future time will be infinite. Its median and other fractiles will all exist 
and be reasonable, but the expected value will not exist. 

However, it has been known for centuries that a risky asset can have 
an infinite expected value and still have a finite market price. In 1738 
Daniel Bernoulli solved the most elementary type of "St. Petersburg 
Paradox" by assuming logarithmic utility. Diminishing marginal utility 
makes most of these paradoxes disappear, and in 1871 Carl Menger 
provided economic grounds for believing that indeed marginal utility 
does, as a rule, diminish.8 In 1934, C. Menger's son Karl demonstrated 
that bounded utility is all that is necessary to rule out all conceivable 
"Super-Petersburg Paradoxes." That is, if utility is bounded, any risky 
asset with finite fractiles will have a finite certainty-equivalent price.9 
Any particular infinite-expected-value asset may have a finite price 
even if utility is not bounded. 

There is therefore no theoretical reason to reject log-stable price 
movements on the grounds that they give infinite expected future 
prices and expected rates of return. However, almost all of finance 
theory, with only a few exceptions (e.g., Samuelson 1976), is based on 
the assumption that variances and expected values of rates of return 
are finite. If prices really do move in a log-stable manner, most of this 
literature is only of heuristic value, with little rigorous applicability to 
the real world. In particular, the global shape of the utility function may 
become relevant, instead of just its local properties. 

Conclusion 

While the purpose of this paper is to defend the plausibility of the 
intermediate stable model in a continuous time framework, we are not 
wed to the assumption that price changes really are intermediate 
stable. As Press (1967) and Praetz (1972) have demonstrated in two 
earlier papers in this Journal, mixtures of variables drawn from dis- 
tributions having different variances can mimic the leptokurtosis char- 
acteristic of intermediate stable distributions and still have tractable 
finite variances. Indeed, in my own earlier work (1975, pp. 99-104), I 
demonstrated that, while unanticipated changes in interest rates pooled 
over the interval 1951-66 are significantly nonnormal (with estimates of 
a in the range 1.34-1.47), when shorter time periods are considered 

8. See McCulloch (1977) for a restatement and extension of C. Menger's theory. 
9. See Samuelson (1977) for a survey of the St. Petersburg Paradox literature. 
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separately and allowed to have different variances, the hypothesis that 
changes are heteroskedastically normal cannot be rejected. The true 
distribution of price changes remains to be settled, as does the issue of 
whether stable distributions are adequate approximations to distribu- 
tions that are strongly leptokurtic, yet not actually stable, such as the 
Student's distribution suggested recently in this Journal by Blattberg 
and Gonedes (1974). We are simply arguing that stable distributions 
should not be dismissed out of hand just because of their interesting 
behavior in continuous time and when exponentiated. 
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