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Introduction 
  Benhabib, Schmitt-Grohé and Uribe, in an article entitled "The Perils of 
Taylor Rules" (BSU 2001), point out that a Taylor Rule (Taylor 1993) with strong 
(more than 100%) feedback from inflation to interest rates, combined with a Zero 
Lower Bound (ZLB), is consistent with two steady state expectational equilibria, 
one at a higher, desired inflation rate, and one at a low or even negative, undesired 
inflation rate.  They argue, assuming Equilibrium Expectations, that the higher 
inflation equilibrium is dynamically unstable while the undesired lower 
equilibrium is stable.  Bullard (2010), in article entitled "Seven Faces of 'The 
Peril,'" concedes that this is a fatal problem for Taylor Rule policies, and that they 
should consequently be replaced with unspecified quantitative easing purchases.  
  This note considers the stability of a strong Taylor Rule, replacing 
Equilibrium Expectations with Constant Gain Learning.  It is found that weak (less 
than 100%) feedback is destabilizing.  Strong feedback can be stabilizing provided 
the feedback, in conjunction with a structural inflation parameter and the speed of 
learning, is not too strong.    
  The ZLB is still an issue, but ordinarily just requires the Central Bank to 
intervene in longer than normal maturity interest rates.  The Taylor Rule raises 
interesting issues in continuous time, but these are not insurmountable.   
  The Evans and Honkapohja "E-Stability" learning mechanism used by 
Bullard and Mehra (2002) is, however, rejected in favor of Constant Gain 
Learning, at least in discrete time models. 
 
The Taylor Rule with Constant Gain Learning 
    Let pt+1 be inflation from time t to time t+1 and 𝜋!", "anticipated inflation," 
be the public's time t expectation of pt+1, based on its experience of relevant data up 
to and including time t.  It is assumed here that the deviation of pt+1 from 𝜋!" is 
driven by the real interest rate gap between the "neutral" or "natural" real rate rN 
and the actual one period real rate, it  – 𝜋!", plus microeconomic white noise WN: 
  𝜋!#$ = 𝜋!" + 𝜇(𝑟% − 𝑖! + 𝜋!") + WN,      (1) 



 2 

for some structural parameter µ > 0.1  The Central Bank (CB) sets it via a Taylor 
Rule 
  𝑖! = 𝑟∗ + 𝜋!" + 𝑎(𝜋!" − 𝜋∗) 
      = 𝑟∗ − 𝑎𝜋∗ + (1 + 𝑎)𝜋!",       (2) 
where p* is its inflation target, r* is its best guesstimate of rN, and a > 0 for 
"strong" (1+a > 100%) inflation feedback or a < 0 for "weak" (1+a < 100%) 
feedback.  It is assumed that the CB uses an emulation of the public's experience-
driven inflationary expectations in its Taylor Rule.2  This may differ from what it 
itself expects the outcome of its own current and intended future policy will be.  
For simplicity, the zero-mean Unemployment Gap is set aside. 
    Combining the structural equations (1) and (2) gives the consolidated 
structural equation (3): 
  𝜋!#$ = 𝜇(𝑟% − 𝑟∗ + 𝑎𝜋∗) + (1 − 𝜇𝑎)𝜋!" +WN    (3) 
Under Equilibrium (i.e. Muth-"Rational") Expectations, 𝜋!" will equal the 
expectation of 𝜋!#$ in (3), and their common value will be the Expectational 
Equilibrium steady state inflation rate 𝜋'': 

  𝜋'' = 𝜋∗ + (!)(∗

*
. 

The Central Bank (CB) can therefore at best expect to miss its inflation target, on 
average, by an amount that is directly proportional to the amount by which it has 
mis-estimated the natural real rate, and inversely proportional to its feedback 
coefficient a.   
     Following Evans and Honkapohja (EH 2001), it is assumed instead that the 
public's Perceived Law of Motion (PLM) at time t is empirically based on the 
potentially relevant observable variables and takes the form  
  𝜋!" = 𝜋!+,- = 𝛼 + 𝛽𝜋!)$ + 𝛾𝑖!)$,       (4) 
summarized by the coefficient vector (𝛼, 𝛽, 𝛾)′.3  Combining (3) and (4), the 
corresponding Actual Law of Motion (ALM) will be  

 
1  A low (or high) one-period real interest rate may also have an indirect stimulative (or restrictive) effect to the 
extent that agents expect the disequilibrium rates to continue into the future.  The present note abstracts from this 
effect. 
 
2  E.g. McCulloch (2025). 
 
3  The full PLM VAR would include a similar equation governing the interest rate and would be required to model 
expectations more than one period into the future.  However, since the CB is ordinarily only targeting the one-period 
rate, this second equation is not required.  Including the interest rate equation would make the Jacobian matrix of the 
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  𝜋!.,- = 𝜇(𝑟% − 𝑟∗ + 𝑎𝜋∗) + (1 − 𝜇𝑎)𝛼 + 
                                                               (1 − 𝜇𝑎)𝛽𝜋!)$ + (1 − 𝜇𝑎)𝛾𝑖!)$ +WN 
            = 𝛼′ + 𝛽′𝜋!)$ + 𝛾′𝑖!)$ +WN      (5) 
for  
  𝛼′ = 𝜇(𝑟% − 𝑟∗ + 𝑎𝜋∗) + (1 − 𝜇𝑎)𝛼, 
  𝛽′ = (1 − 𝜇𝑎)𝛽, 
  𝛾′ = (1 − 𝜇𝑎)𝛾. 
The EH "T-Map," ALM= T(PLM), is therefore a simple affine transformation: 
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The three eigenvalues of this T-Map all happen to all be real and equal to 
  𝜆/- = 1 − 𝜇𝑎. 
  Under what EH call "Iterative Learning" (IL), each period's PLM is simply 
the preceding period's ALM: 4 
  PLMt = ALMt-1. 
The general condition for IL-Stability is that each of the potentially complex 
eigenvalues of the T-Map must lie inside the unit circle on the complex plane.  If 
they happen to be real, as they are here, this simply means that they must each lie 
in the interval (−1, 1).  In our case, this requires  
  0 < 𝜇𝑎 < 2.          (7) 
The lower bound on 𝜇a is automatically met if there is strong inflation feedback, 
i.e. if a > 0, since µ is assumed to be positive.  Weak inflation feedback, i.e. a < 0, 
is clearly IL-unstable.  However, if a > 1/µ, there will be overshooting with 
inflation alternately above and below its equilibrium level.  With a > 2/µ, these 
alternations will be explosive.   

 
T-Map 6x6.  When this is done, however, three of the eigenvalues remain as in (6) below, and the other three are all 
zero, so that learnability is not affected.   
 
4  An alternative interpretation of IL is that the PLM remains constant during an era of several periods, during which 
the ALM is simply observed and the PLM is constant.  Then the PLM in era e is given by PLMe  = ALMe-1. 
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  Iterative Learning is useful for intuition and instruction, but is clearly 
unrealistic.  It is more realistic to assume, in the spirit of Recursive Least Squares 
(RLS), that agents learn a little about the current ALM each period, rather than all 
or nothing.  This can be modelled by Constant Gain Learning (CGL) as in 
Equation (10.10) of EH (2001: 232): 
  PLM! = 𝜔ALM! + (1 − 𝜔)PLM!)$,      (8) 
for some constant gain w  in (0, 1).  This model generalizes the much-criticized 
Adaptive Expectations (AE) model of Cagan (1956) to allow for multiple variables 
and/or transient dynamics, all with time-varying parameters that can accommodate 
changes in the structural and policy parameters.  Constant gain RLS itself is the 
limiting behavior of generalized RLS when the noise/signal ratio is held constant 
(McCulloch 2024). 
  It can easily be shown that if 𝜆/- is an eigenvalue of the T-Map, then  
  𝜆01, = 𝜔𝜆/- + 1 − 𝜔 
is an eigenvalue of the CGL transformation (8).  For our Taylor Rule (3), Equation 
(6) implies that all three of the CGL eigenvalues of (8) again happen to be real and 
equal, with 
   𝜆01, = 1 − 𝜔𝜇𝑎. 
CGL-Stability therefore requires  
  0 < 𝜔𝜇𝑎 < 2.         (9) 
Clearly, weak inflation feedback (a < 0) is still destabilizing, and CGL does not 
help.  Too strong inflation feedback can be destabilizing, but this will be offset 
under CGL so long as 𝜔 < 2/(𝜇𝑎).  In fact, the alternations that would otherwise 
occur if 𝜇𝑎 > 1 would be efficiently neutralized if 𝜔 = 1/(𝜇𝑎). 
   
The Zero Lower Bound 

  If 𝜋!* <
*2∗)(∗

$#*
, the desired one period nominal rate given by (2) will be 

negative and the CB will be up against the Zero Lower Bound (ZLB).  In this case 
it may still be feasible to achieve the desired stimulus by intervening in a maturity 
longer than one period.5   
  Assume for simplicity that anticipated inflation and the equilibrium real 
rates that equate planned consumption and production date by date throughout the 

 
5  This section extends an argument made already in McCulloch (2018).  
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future are both constant with respect to maturity.  Let m0 be the time, in years, 
between the discrete time periods.  Then a decrease (or increase) in the 
continuously compounded nominal and therefore real one period interest rate of Di 
that leaves forward rates beyond m0 unchanged will decrease (or increase) the log 
value of current output relative to future output at every point in the future, and 
therefore of aggregated future output, by Di´m0.  The direct stimulative (or 
restrictive) effect of a decrease (or increase) in the one-period rate is therefore 
proportional to this product.   
  When the ZLB is binding, the CB desires a (negative) real interest rate gap 
of 𝑎(𝜋* − 𝜋∗) at maturity m0, for a stimulus of 𝑎(𝜋* − 𝜋∗)𝑚3.  With a zero 
nominal interest rate, the real interest rate gap is instead only −(𝜋* + 𝑟∗).  
However, if the CB instead intervenes with a zero nominal interest rate at a 
somewhat longer maturity mZLB, it can expect to achieve approximately the same 
stimulus by setting  

  𝑚4,5 =
*(2∗)2#)
2##(∗

𝑚3,        (10) 

so long as 𝜋* > −𝑟∗.6   
  In a literally discrete time economy, (10) might not yield an integer multiple 
of m0.  In that case, the CB could set mZLB equal to the smallest integer multiple of 
m0 that is greater than the value in (10), with an appropriately increased, and 
somewhat positive, nominal rate. 
       On paper, an initial 𝜋3" < −𝑟%, if true at all horizons, would still lead to a 
hyperdeflation, but this would unrealistically imply that money would already be 
infinitely valuable in terms of goods so that the hyperdeflation would already have 
been complete.  If instead this were only true for shorter horizons, the CB could 
still break out of a ZLB situation by targeting an appropriate mZLB > m0 at which 
expected inflation did exceed the negative of the real rate, with appropriate 
adjustments to the formula. 
 
The Evans and Honkapohja "E-Stability" Learning Mechanism 
  Rather than developing the CGL model (8), EH in their eq. (10.9) (2001: 
231) instead propose replacing the unrealistic IL model with the following "E-
Stability" differential equation: 

 
6  The stimulus would only approximately be equal, because output at mZLB and beyond is a smaller share of 
intertemporal wealth than is output at m0 and beyond.  However, the difference is minor so long as mZLB is small. 
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  8
8!
PLM! = (ALM! − PLM!).         (10) 

Bullard and Mitra (2002) analyze the learnability of Taylor Rule dynamics using 
this equation. 
  However, it is inconsistent to model agents as learning continuously in the 
discrete-time world implied by the type of PLM and ALM that EH consider.  CGL 
(8) is in the same spirit as E-Stability, but consistently assumes discrete time for 
both the laws of motion and the learning process.   
  That something is amiss with (10) is evident from its lack of a constant of 
proportionality on the right-hand side.  The E-Stability of a model is determined by 
the sign of the real part of the eigenvalues of the T-map, and since this sign would 
not be affected by any positive constant of proportionality in (10), setting this 
constant equal to unity does not affect the E-Stability condition.  This 
counterintuitive property is contrary to the above results with CGL, in which the 
rate of learning 𝜔 can be consequential for stability.   
 
The Taylor Rule in Continuous Time 
  To be sure, time is continuous in the real world, and discrete-time models are 
recognized to be merely a simplifying approximation to reality.  However, the 
continuous-time limit of a discrete-time model in which the CB sets the one-period 
interest rate would have to contend with the fact that if 𝑚3 = 0, an infinite change 
in the m0 rate would be required to have any stimulative or restrictive effect at all.   
  On the restrictive side, this would simply mean that the CB would have to 
engineer a discontinuity at zero maturity in the "discount function" δ!(𝑚) that 
gives the present value of a unit of currency to be paid at maturity m.  Let 𝛿!%(𝑚) 
be the "neutral" nominal discount function that equates planned consumption and 
production throughout the future, given inflationary expectations.  Assuming for 
simplicity that the natural real rate is constant with respect to both time and 
maturity and that expected inflation is constant with respect to maturity, the neutral 
nominal discount function will be 
  𝛿!%(𝑚) = 𝑒𝑥𝑝(−(𝜋!* + 𝑟%)𝑚). 
Then if it desired to increase the cost of present (time t) output relative to all future 
output by say 1% without directly disturbing forward rates beyond t = 0, the CB 
would have to intervene to alter the discount function to  
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  δ!(𝑚) = K 1, 𝑡 = 0																																													
𝑒𝑥𝑝(−(𝜋!* + 𝑟%)𝑚 − .01), 𝑡 > 0. 

This could be accomplished by offering its entire portfolio for sale at a price of 
exp(−.01) times the face value of each issue, including any coupons.   
  However, a symmetrically expansionary policy in continuous time that 
reduced the price of current consumption relative to all future consumption by the 
same 1% would immediately be up against the ZLB.  The best the CB would be 
able to do would be to set nominal rates equal to zero out to maturity 
  𝑚4,5 = .01/(𝜋* + 𝑟9), 
resulting in a discount function of 

  δ!(𝑚) = K
1,			𝑡 ≤ 𝑚4,5																																													
𝑒𝑥𝑝(−(𝜋!* + 𝑟%)𝑚 + .01), 𝑡 > 𝑚4,5.

 

This reduces the price of time t consumption relative to time t + m consumption by 
somewhat less than 1% for m in (0, mZLB), but that portion of the future accounts 
only a small fraction of its total value.   
  It is not clear how Adaptive Learning should be modelled in a continuous 
time world.  In equation (8), we would expect 𝜔 to be roughly proportional to 𝑚3, 
so that 𝜔 ≈ 𝜌𝑚3 for some positive r.  Therefore (10), with this 𝜌 added to the 
right hand side, would seem to be the natural limit of CLG, but as noted above, it is 
suspect in my mind because its stability would not depend on r.   
  In the US, financial markets operate in continuous time, but the FOMC only 
meets 8 times a year and almost never changes its overnight target between 
meetings.7  It is therefore virtually an arbitrage relationship that the approximately 
1/8-year interest rate equals its overnight target, so that the Fed behaves much like 
a discrete time CB with an effective time interval of 1/8 year.   
 
Benhabib, Evans and Honkapohja 
  Benhabib, Evans and Honkapohja (2014: 227-8) investigate a discrete time 
4-variable Taylor Rule model with learning, but model the expectation of each 
variable with constant gain univariate AE as in Cagan (1956) rather than 
multivariate CGL.  Although they call their model "Constant Gain Learning," it is 
only the very narrow AE special case of (8). 
 

 
7  Recent exceptions that prove the rule are 3/3/20 and 3/15/20 during the covid crisis.   
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Concluding Comments 
  The Taylor Rule admittedly still has a number of uncertainties and potential 
"perils":  The neutral real rate rN is not directly observable and surely fluctuates 
over time with intertemporal demand and supply shocks.  The public's 𝜋!" can only 
be roughly estimated.  The Central Bank can force equilibrium inflation pEE close 
to its target with a high value of its feedback coefficient a, but as has been shown, 
that also has a destabilizing effect.  Any instability could in theory be offset with 
sufficiently slow learning, but it is an empirical question whether the noise/signal 
ratio in the historical data (McCulloch 2024) would imply a sufficiently low 
asymptotic gain.   
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