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Abstract

The cdf and pdf of the maximally skewed (B = 1) stable distributions are tabulated to high
precision, by means of Zolotarev’s integral representation, for o = 0.50 (0.02) 2.00, at fractiles
corresponding to p = 0.0001, 0.001, 0.005, 0.01 (0.01) 0.99, 0.995, 0.999, 0.9999. This tabulation is
intended to be suitable for developing and calibrating a numerical approximation to these distribu-
tions. The probability at the tabulated fractiles is estimated to be accurate to within 4.1 x 10~ 19 The
densities have an absolute precision of 2.0 x 10~ * and a relative precision of 1.6 x 107*2, Zolotarev’s
correction of the discontinuity at & = 1 is graphically illustrated. The full tabulation, documented
here, is available by anonymous FTP.
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1. Introduction

A probability distribution with cumulative distribution function (cdf) S (x) is said
to belong to the stable family if and only if all linear combinations in positive
coefficients of X; and X, have the same distribution, to within a location and scale
shift, as do X, and X, themselves, when X; and X, are independent drawings from
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the distribution S(x). According to the Generalized Central Limit Theorem, if the
distribution of the sum of n independent and identically distributed (iid) random
variables has a weak limit, after shifting and scaling, as n becomes large, the limiting
distribution must be a member of this stable class (Zolotarev, 1986). In many
applications, observed errors arise as the sum of a large number of more or less
independent unobservable contributions. The normal or Gaussian distribution is
the most familiar and tractable member of the stable class, and therefore is
commonly assumed to approximate the actual distribution of errors. However,
' observed errors are often more leptokurtic than is consistent with normality. In
such situations, the stable distributions become the natural extension of the normal.

The standard stable distributions, Sap(x), are most usefully parameterized in
terms of the log characteristic function (cf)

— |t|*[1 —ifsign (t)tan(na/2)], a #1,
—|t[[1 +iB(2/m)sign(t)log|t]], a=1,

The characteristic exponent o e(0,2] determines the degree of leptokurtosis. When
« equals 2, a normal distribution with variance 2 results. When « is less than 2, the
cdf has at least one Paretian tail that behaves like |x|™* for large |x|, and the
skewness parameter ff € [ — 1, 1] indicates the limiting ratio of the difference of the
Paretian tail probabilities to their sum. As «12, the Paretian tails vanish and B loses
its effect. When (1) is used, B > 0 indicates positive skewness and B < 0 indicates
negative skewness (see Zolotarev 1986; Hall, 1981).

Following DuMouchel (1975), a location parameter § € (— oo, 00) that shifts the
distribution to the left or right, and a scale parameter c e (0, o) that expands or
contracts it about 6 may be added in such a way that the general stable cdf may be
written as

log Ee'™" = o (1) = { 1)

S(x;a,B,¢,6) = Sep((x — )/c). 2)
The general stable log cf implied by (2) is
log Ee'** =18t + 4 (ct). (3)

For further properties of stable distributions, the reader is referred to Zolotarev
(1986), Cambanis et al. (1991), Samorodnitsky and Taqqu (1994), Janicki and
Weron (1994), and McCulloch (1996a, b).

In the symmetric case f =0, McCulloch (1996c) has developed a fast and
reasonably accurate numerical approximation to the stable cdf and density. How-
ever, no comparable approximation is presently available for any other value of B.
A practical approximation to the full class of stable distributions would greatly
simplify studies like that of Buckle (1995), which deal with data that is skewed as
well as leptokurtic.

Stable distributions are maximally positively skewed when f equals its upper
bound of 1. In this case there is an upper Paretian tail but the lower tail has no
Paretian component and falls off even faster than the normal. When « < 1.
Sa1(x) = 0 for x < 0, and the distribution is 5aid to be positive. The thin lower tail of
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the maximally skewed stable distributions presents problems not present in the other
cases. These problems must be solved before the general case can be addressed.

The maximally skewed stable distributions are important in their own right.
They arise in the fields of nuclear engineering (Zolotarev, 1986), quantum statistics
(Weron and Weron, 1985), dielectric relaxation (Weron and Jurlewicz, 1993),
hydrology (Gupta and Waymire, 1990), and astronomy (Marcus, 1965). They
govern the asymptotic properties of certain statistics that depend on a sum of
squared errors, such as the Durbin-Watson ratio or the common tests for
covariance stationarity, when errors have infinite absolute fourth moments. (Phil-
lips and Loretan, 1991; Loretan and Phillips, 1994). Because of their role in
subordinated stable distributions (Samorodnitsky and Taqqu, 1994, 20-21), they
govern the density of the elliptical multivariate stable distributions (McCulloch,
1996b), as well as the scale of the GARCH-like subordinated stable conditional
heteroskedastic processes (de Vries, 1990). In financial economics, apparently stable
asset returns are ordinarily intermediately skewed (e.g. Buckle, 1995), if not sym-
metrical. Even so, the maximally skewed stable distributions are required for
evaluating options on assets with intermediately skewed and even symmetrical
log-stable returns (McCulloch, 1996b).

The present study tabulates the maximally positively skewed stable distributions
Sa1(x) for a = 0.50 (0.02) 2.00 to high precision, in a form suitable for developing
and calibrating a numerical approximation to these distributions. In order to space
the calibration points well across the distribution, the cdf itself is given in the form
of fractiles x = S;;(p) at the cumulative probability values p = 0.0001, 0.001, 0.005,
0.01 (0.01) 0.99, 0.995, 0.999, 0.9999. The probability density function (pdf) s,; (x) is
then evaluated at each of these fractile values.

The full table is too massive (133 pages; 439 KB) to publish here, but instead is
available by anonymous FTP at ecolan.sbs.ohio-state.edu/pub/skewstable/, file frac-
den, and also at ftp.uta.edu/pub/projects/skewstable/. Table 1 gives an illustrative
subset of the full table, for o = 0.50, 1.00, and 1.50, and selected p values. The
fractiles are tabulated to 11 digits of precision and the densities to 15 digits of
precision, in exponential format. The probability at the reported fractile is esti-
mated to be accurate to within 4.1 x 10~ °. The density at the reported fractile is
estimated to be accurate to within an absolute error of 2.0 x 10~ 13, and a relative
error of 1.6 x 10~ 2 The fractiles themselves are accurate to the probability precision
divided by the local density. Previous tabulations of the maximally skewed stable
distribution (Bol'shev et al,, 1970, 4 place; DuMouchel, 1971, 5 place) and density
(Holt and Crow, 1973, 4-place) have far less precision. Other stable tabulations
(Fama and Roll, 1971; Panton, 1992, 1993) deal only with the symmetric case.

2. Discussion

Holding B, ¢ and é constant, the stable characteristic function (3), and therefore
the distribution itself, undergoes a discontinuity as « passes 1 unless 8 = 0. Fig. 1
shows the standard cumulative probability distributions S, (x) as plotted from our
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Table 1

Maximally skewed stable fractiles and fractile densities: illustrative subset of
full tabulation in file fracden

o

p

x=5:"(p)

Sa1 (x)

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50 -
0.50
0.50
0.50
0.50
0.50
0.50
0.50
050
0.50
0.50
0.50
0.50
0.50

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

0.0001
0.0010
0.0100
0.0200
0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500
0.4000
0.4500
0.5000
0.5500
0.6000
0.6500
0.7000
0.7500
0.8000
0.8500
0.9000
0.9500
0.9800
0.9900
0.9990
0.9999

0.0001
0.0010
0.0100
0.0200
0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500
0.4000
0.4500
0.5000
0.5500
0.6000
0.6500
0.7000
0.7500

6.6064575687E — 02
9.2356859706E — 02
1.5071824938E — 01
1.8477817997E — 01
2.6031777170E — 01
3.6961151008E — 01
4.8256705888E — 01
6.0887456127E — 01
7.5568443071E —~ 01
9.3093039189E — 01
1.1448758626E + 00
1.4117787229E + 00
1.7523819106E + 00
2.1981093390E + 00
2.7986340681E + 00
3.6364178825E + 00
4.8567236131E + 00
6.7352829538E + 00
9.8492043223E + 00
1.5580023718E + 01
2.7959687266E + 01
6.3328117678E + 01
2.5431444455E + 02
1.5912160766E + 03
6.3658643851E + 03
6.3661943867E + 05
6.3661976900E + 07

2.1849120477E + 00
1.9612653085E + 00
1.6275061066E + 00
1.4855280174E + 00
1.2413046955E + 00
9.8283730757E — 01
7.7888323692E — 01
3.9483193480E — 01
4.1776476362E — 01
2.4045468918E — 01
5.7580616609E — 02
1.3571822207E — 01
3.4467428392E ~ 01
5.7563014450E — 01
8.3697041069E — 01
1.1405756677E + 00
1.5043951879E + 00
1.9574701760E + 00
2.5508156833E + 00

1.21356583204336E — 02
6.33184437322565E — 02
2.47122229847038E — 01
3.35549115138592E — 01
4.40039998765221E — 01
4.58976595025777E — 01
4.22269779307600E — 01
3.69386695471860E — 01
3.13362921467179E — 01
2.59582823630614E — 01
2.10428063372091E — 01
1.66897186487796E — 01
1.29285984338474E — 01
9.75097267942318E — 02
7.12689653221390E — 02
5.01400529409011E ~ 02
3.36267068458687E - 02
2.11902481460247E — 02
1.22676438492458E — 02
6.28232430507648E ~ 03
2.65060590648705E — 03
7.85391638751667E — 04
9.81747198329580E — 05
6.28318522468520E — 06
7.85398162752572E — 07
7.85398164071347E — 10
7.85398163460882E — 13

1.20913237657303E — 03
8.69618603024061E — 03
5.38427032673220E —- 02
8.82959908692096E — 02
1.58266246832091E — 01
2.25589278887450E — 01
2.61775165571778E — 01
2.79206987456308E — 01
2.83752942618803E - 01
2.78899325157886E — 01
2.66995257732917E — 01
2.49764217228393E — 01
2.28555138795696E — 01
2.04481748174078E — 01
1.78507735792456E — 01
1.51503576055258E — 01
1.24287934789192E — 01
9.76608543330775E — 02
7.24331302773577E — (2
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Table 1 Continued

p

x=28z"(p)

Se1 (X)

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50

0.8000
0.8500
0.9000
0.9500
0.9800
0.9900
0.9990
0.9999

0.0001
0.0010
0.0100
0.0200
0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500
0.4000
0.4500
0.5000

_ 0.5500

0.6000
0.6500
0.7000
0.7500
0.8000
0.8500
0.9000
0.9500
0.9800
0.9900
0.9990
0.9999

3.3842882767E + 00
4.6862628047E + 00
7.1286784854E + 00
1.4004804442E + 01
3.3732198367E + 01
6.6020512869E + 01
6.4045906557E + 02
6.3715044008E -+ 03

— 4.5665389704E + 00
— 4.0473367935E + 00
— 3.3711334460E + 00
— 3.1147755100E + 00
— 2.7117446662E + 00
— 2.3312357815E + 00
~ 2.0599692455E + 00
— 1.8344267374E 4 00
— 1.6328124097E + 00
— 1.4444625303E + 00
— 1.2629375020E + 00
— 1.0836467501E + 00
—9.0278392285E — 01
— 7.1671068575E — 01
— 5.2147017792E — 01
— 3.1224904768E — 01
— 8.2596962340E — 02
1.7693386413E - 01
4.8151210882E — 01
8.5829482041E — 01
1.3636800656E + 00
2.1457331050E + 00
3.8242359660E + 00
7.3019969444E + 00
1.1654134354E + 01
5.4191613924E + 01
2.5153975348E + 02

4.94548057250199E — 02
2.96445410639818E — 02
1.40195490964922E — 02
3.71974588044426E — 03
6.15399149070384E — 04
1.55484962873149E — 04
1.56922296700933E — 06
1.57063922092402E — 08

4.92901468494204E — 04
3.96110251555282E — 03
2.88364271498797E — 02
5.05779088384112E — 02
1.01499738963684E — 01
1.62356069148668E — 01
2.05635718920809E — 01
2.36695367319111E — 01
2.58167516187233E — 01
2.71641625296920E — 01
2.78190471434978E — 01
2.78592974837143E — 01
2.73446655242114E — 01
2.63232189368862E — 01
2.48355183903037E — 01
2.29177339185606E — 01
2.06044582055238E — 01
1.79319175558072E — 01
1.49426020153363E — 01
1.16933807050329E — 01
8.27224685036277E — 02
4.83899144035980E — 02
1.74533201706293E — 02
4.02208425595022E — 03
1.28010348607252E — 03
2.76780378815650E — 05
5.96326884561649E — 07

full tabulation. It may be seen that as « increases from 0.5 toward 1.0, the fractiles

3

all increase without limit. As o decreases from 2.0 toward 1.0, the fractiles below

approximately p = 0.87 all decrease without limit. The o = 1 distribution stands by

itself in the middle. Fig. 2 shows the corresponding densities 5,4 (x), with the a = 2.0

normal density (with variance 2) in the foreground and the « = 0.5 Lévy or inverse

¥%(1) density in the background.

The discontinuity that is apparent in Figs. 1 and 2 may in fact be thought of as

a discontinuity in the focus of siability, which we have somewhat artificially fixed
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Skew—Stoble Distributions
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Fig. 1. Maximally skew-stable cumulative probability distribution functions for 0.50 < « < 2.00 in
increments of 0.02. Bold lines represent o = 0.50, 1.00, 1.50 and 2.00.

Skew~—Stable Densities

0.5

0.4

0.3

s(x)

0.2

0.1

Fig. 2. Maximally skew-stable probability density functions. The normal density s; o(x) is in the
foreground, while the Lévy density s¢.s 1(x) is in the background.
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upon as our location parameter for o # 1, rather than in the distribution itself.
McCulloch (1986) defines a focus of stability to be any fractile of a stable distribu-
tion that is invariant under averaging of iid contributions. If # iid stable variates
with scale ¢ are averaged, the average has scale n'*~!¢. Unless o = 1, the scale of
the average is different than that of the contributions, and therefore the focus of
stability is unique. In the convergent cases o > 1, the scale of the average is smaller
than that of the contributions, so that the distribution of the average converges in
toward the unique focus of stability at § = Ex. In the divergent cases o < 1, the scale
of the average is greater than that of the contributions, so that the Law of Large
Numbers works in reverse: The distribution of the average diverges out away from
the unique focus of stability at 8, while the mean is undefined. In the Cauchy case
a =1, B =0, the distribution of the average coincides with that of the contribu-
tions, so that every fractile is a focus of stability. In the afocalcases « = 1 and f # 0,
however, no focus of stability exists and § is just an arbitrary fractile that happens
to simplify the cf.
If we define the modified location parameter

_ |6+ Betan(na/2), « # 1,
(= {5, i @

then Zolotarev (1986, 11) has shown that the characteristic function and therefore
the distribution of the new variable z = x — { undergoes no discontinuity as
a passes unity. Fig. 3 shows the maximally skewed stable cdfs as a function of
z rather than x, while Fig. 4 shows the corresponding densities as a function of z. In
order to obtain a good perspective, Fig. 3 was drawn with the « axis reversed from
Figs. 2 and 4, so that the « = 0.5 Lévy distribution is in the foreground, and the
normal distribution is in the background. Unfortunately, Fig. 1 does not lend itself
to a perspective view from any angle. In Figs. 2-4, the cdf and density are not
plotted outside their support.

Janicki and Weron (1994, 23) take the position that for « = 1, the only acceptable
value of §is 0. In fact, Figs. 3 and 4 demonstrate that the afocal stable distributions
fit in smoothly between the convergent and divergent cases, if we just know where
to look for them. With finite samples, they will be statistically indistinguishable
from their immediate neighbors.

Clearly any numerical approximation to S.s(x) should be based internally on
z rather than x. Externally, however, it is ordinarily expedient to retain & rather
than { as the “official” location parameter, since & has an important interpretation
for a # 1, whereas { has no known significance other than that it removes the
discontinuity while retaining a simple relation to the cf when a = 1. Nevertheless, if
a is insignificantly different from 1 and the distribution is clearly skewed, little can
be said about & other than that it lies in a confidence set of the form (— oz,
a]ulb, o). In such a case, ¢ will still be well-identified, and will provide good
information as to the location of the distribution.
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Skew—Stable Distributions

1.0

0.6 0.8

S(z + zeta)
0.4

0.2

Fig. 3. Maximally skewed stable cumulative probability distribution functions, as a function of
z =x —{. The Lévy distribution So.s ,(z + {) is in the foreground, while the normal distribution
S;,e(z + {) is in the background.
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Fig. 4. Maximally skewed stable probability density functions, as a function of z = x — . The normal
density sz o(z + {) is in the foreground. while the Lévy density so.5.;(z + {) is in the background.
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3. Computation

The standard stable cumulative probabilities and densities were computed by
means of the proper integral representations due to Vladimir M. Zolotarev (1986,
74, 78). For o # 1 and x > 0, the cumulative probability determined by character-
istic function (1) is, in our notation (see section on alternative notations below),
given by

Sap(x) = C(@,0) + ff'—q'—‘(;—_"‘) J 10 exp [ _gri1 Ua(go,G)}d(p, )
where

£ = o, | ©

ot = [1 + (,Btan ”—2“-)2]_”2“, )

0 =-n2—atan"1 [ﬁtan%], ®)

1, a>1
Cle,0) = {(1 —9)/2, a<l,

. [sindno(e + ) |"C? cosin((ox — 1) + b
Ua((P, 6) - [; (Z:OSl((p ):] 2 (( - )(p )-
3T COS3 QY
For o = 1 and g > 0, the cdf becomes
1! .
&Aw=§f exp(— e~ Uy (o, B)) do, ©
-1
where .
x* =%nx + Blogin (10)
_n(l + Bo) T 1 T

The cdf-for « # 1 with x < 0 or for o = 1 with § < 0 may be computed using the
identity

Sup(— %) =1 — S, ().

The densities may be computed by differentiating (5) and (9). For a # 1 and any
x 5 0, this may be written

alx*ll/(a-l)

1
N1 o x Ua((pa 0*)exp[_ !x*'a/(a—l) Ua((/)a 0*)]d(pa (11)
21 = ol L,.

Saz[f (X’) =
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where 6* = 0 sign(x). For a = 1, § # 0, and any x,

Sa1 (%) = e f Ui (9, B) exp(— e~ " U, (o, ) do. (12)
| Bl -1

For our special case § = 1, the following simplifications are useful:

c* =

mo| M —Q2—w)/a, a>1
cos ™", 9_{1, Y C)=0,a<1. (13)

At the limits of integration, the function U.(@,0) is incalculable for f = +1 as
given above. The limiting values given in Table 2 must be employed in these cases.
At the infinite limits, both the cdf integrand and the density integrand are 0. At the
0 limit the cdf integrand is 1, but the density integrand is O.

Numerical integration was performed by n + 1 point Simpson’s rule quadrature
and checked variously with Gaussian, Romberg, and Richardson extrapolation
quadrature methods. The precision was estimated under the assumption that the
remaining error using Simpson’s rule with n + 1 points is bounded above by the
absolute difference between n + 1 point quadrature and (n/2) + 1 point quadra-
ture. Fractiles were found by a numerical search procedure. Precision rather than
efficiency was the primary concern.

For B = +1, U,(¢,0) and U,(¢,B), and therefore the cumulative probability
integrands, are monotonic functions of @. Furthermore, the cdf integrands are
bounded below by 0 and above by 1. The only problematic cases are those in which
the integrand falls (or rises) abruptly from 1 to 0 (or from O to 1), and elsewhere is
virtually 1 or 0. This tends to occur when « is near 1 or 2 and/or x is near 0 or very
large. In these cases, it is useful to first isolate the non-trivial region with a prelimi-
nary grid search before attempting numerical integration. For example, with
a =098 and p =0.9999 (x = 7738.83...), the integrand is within 10~ 1° of 1 for
@ <0.99968, and within 1071 of 0 for ¢ > 0.99982. Even within this reduced
range, Simpson’s rule with n = 10° was required in order to achieve the desired
relative precision, though in most cases n = 10000 or 100000 was adequate.

The most difficult density cases occur for the same o and x values, when the
integrand becomes a narrow spike. These cases were handled with a cascading
adaptive Simpson’s rule procedure: The function was first integrated over the entire

Table 2

Limiting values of.U,(¢,60) and U, (¢, f) at lower and upper limits of
integration '

Parameter values Lower limit Upper Limit
a>1f=1(0=(—2)/0) 0 0
a>1Lf=—1{0=2—a)a) o (o0 — 1}t =2
x=1f8=1 1/e o]

a=1f= —1 o l/e

a<,f=1(0=1) (1 — o)/~ o




J.H. McCulloch, D.B. Panton [ Computational Statistics & Data Analysis 23 (1997) 307-320 317

interval with n + 1 points. If this was above tolerance, the interval was split in half,
and an additional n/2 points evaluated in each half. If these subintervals were
individually above half the total tolerance allowed, they were again split in half,
iteratively, up to r times, giving a local grid spacing as fine as 1/(n2") times the full
interval. In most cases r = 15 was adequate with n = 10000. However, with a = 1
and p = 0.9999, r = 30 was required. With « = 1.02 and p = 0.9999, the spike near
¢ = 0.9998 fell completely between the initial grid points with n = 10000, so it was
necessary to adjust the lower limit by hand to compensate for this.

The argument of the exponential function in (5) and (9) often generates floating
point overflows if calculated directly. These can be avoided by first computing the
logarithm of the absolute value of the argument, and replacing it with a large value
such as 700 if it is in excess of this value, before exponentiating, negating, and
exponentiating again to obtain the integrand. This essentially sets the integrand to
0in the overflow cases, and gives a better conditioned answer in many others. In the
density integrals, the product of an overflow and an underflow sometimes arises if
computed directly. In order to avoid this, it is expedient to move the terms in front
of the integral inside the integral, compute the logarithm of the entire expression,
and then exponentiate the result to obtain the integrand.

All calculations were performed on a (corrected) Intel P5 processor in GAUSS
3.2.12, and variously checked on an Intel 486 processor in PASCAL. The normal
fractiles and densities in the tabulation were computed with the GAUSS CDNFI
and EXP functions rather than with the integral representations.

4. Duality

An important duality relationship exists between each half of each convergent
stable distribution with characteristic exponent a > 1 and half of a divergent stable
distribution with exponent o’ = 1/a€[0.5,1.0) (Zolotarev, 1986, 82). In our nota-
tion, this relationship implies that for x > 0 and « > 1,

0Se1 (— x/c¥) = S1/a,1((x/c’1k/a)_a),

where c¥ and c¥,, are computed as in (13) but with &’ = 1/ in place of « in the latter
case. Thus, a numerical approximation to the convergent portion of our tabulation
would make an approximation to the divergent portion redundant. The opposite is
not true, since the upper halves of the convergent distributions in our tabulation are
dual to the lower halves of intermediately skewed divergent distributions that we
have not tabulated. However, a numerical approximation to all the divergent
distributions with « > 0.5 would make an approximation to the convergent cases
redundant.

The simplest instance of this duality is that between the normal distribution
S, e(x) and the Lévy distribution Sy s ; (x). The duality relationship implies that the
latter is equivalent to the inverse y? distribution with 1 degree of freedom. The Lévy
values in Table 1 and in the full tabulation were computed numerically using
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Zolotarev’s integral representations, but the reader may check that they match the
distribution of the inverse square of a standard (unit variance) normal variable to
within the claimed precision.

5. Numerical approximation

As in McCulloch (1996¢), any numerical approximation to the skew-stable density
function should be constructed as the derivative of a proper approximation to the cdf,
80 as to guarantee that the density approximation integrates exactly to unity and
therefore obeys the crucial information identity. Its parameters should then be
chosen so as to minimize the average over « of the expectation (as roughly computed
using the tabulated fractiles) of the squared deviation of the density approximation
from the density calibration values given in our tabulation. This will give the
approximation a very low maximal expected relative error, and hence place a low
upper bound on the expected error in any log likelihood calculated from it. In order
to control the relative error in the tails, the upper tail should asymptotically have the
well-known Paretian form, while the lower tail should have the asymptotic form
implied by Zolotarev’s Eq. (2.5.21-22) (1986, 100). Any proper distribution approxi-
mation that has the correct tail behavior and whose derivative is a good fit to the
density will also fit the cdf well, as may be confirmed from our fractile tabulation.

6. Alternative notations

Our parameterization (3) corresponds, in the standard case ¢ = 1,6 =0o0of (1), to
Zolotarev’s representation A (1986, 9), in which the complex portion of the stan-
dard log cf is given in Cartesian form. However, Zolotarev expresses his integral
representation (1986, 74, 78) in terms of two alternative representations, B (1986, 12)
and C (1986, 17), in which the complex portion is instead given in polar form. He
indicates the skewness parameters of his A and B representations as f, and fg,
respectively. However, throughout his Chapter 2, which presents the integral
representations, “f” with no subscript is implicitly the polar B (see 1986, 59),
whereas our “B” is the very different Cartesian B4 (see Samorodnitsky and Taqqu,
1994, 9). Zolotarev’s newer C representation uses 6 as its skewness parameter. This
is less confusing and at the same time actually simplifies the formulas in which the
polar notation is useful. We have therefore completely avoided the B representa-
tion, which may now be regarded as obsolete, in the preceding sections.

To see the equivalence of our formulas to Zolotarev’s for a#1, note that 6 in
Zolotarev’s (1.28) (1986, 17) is equivalent to his BsK (2)/a, where the definition of the
now obsolete K («) does not concern us here. Substituting this into the first line of
his Eq. (1.19) on his p. 12 yields our (8). Substituting it into the third line of his (1.19)
and setting Ap = 1 yields

Aq = (14 Bitan®(na/2)" 112,
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But Zolotarev’s 44 is equivalent to our ¢* (cp. our (3) and his (A), p. 9). This implies
that his formulas for « £ 1 are for an x* which in the Cartesian notation has scale c*
as given by (7).

For o = 1, his integral representations are based on the log cf

log Eei*t = — |t|(n/2 + ilog]t]| sign (t))

given in his (B) on p. 12. This is equivalent to our (3) with ¢ ==/2 and
0 = Blog(n/2). His formulas are therefore for an x* as given in (10). Dividing
Zolotarev’s density representation by this c replaces his leading 1/2 by 1/x.

In (1986), Zolotarev modifies the definition of his K(x) in such a way that
Pz always has the same sign as f,. Buckle (1995) employs an older version of the
polar B representation, in which f has the sign opposite that of f, when o > 1.
Thus his finding of a negative “f” for the stock he studies (1995, Fig. 5b) indicates
that its returns are positively skewed, as is apparent from his Fig. 6. Furthermore,
since his “B” is polar, it is quite different, even after negating, from the Cartesian
B4 employed here. See Samorodnitsky and Taqqu (1994, 8-9) for further discussion
of this distinction.

Hall (1981) and Samorodnitsky and Taqqu (1994, 5) use the standardized
Cartesian form (1), but take the general log cf to be iut + c*,4(f). For o = 1, this
u equals 6 — (2/n)fclogc, and does not have the linearity property (2). For this
location parameter, the shift that achieves continuity in the general case is
Bc*tan(no/2), rather than fctan(mo/2). See McCulloch (1996b) for details.
Zolotarev’s A representation (1986, 9) uses the same form, but with 4 in place of
¢* and Ay in place of u. When ¢ = 1, as in the standard case tabulated here, these
distinctions are fortunately moot.

Panton (1992), following Worsdale (1975), standardizes the symmetric stable
distributions in terms of an alternative scale parameter that may be written
o = cal’*. This scale parameter has the virtue that it equals the standard deviation
in the normal case, without disturbing the standard Cauchy parameterization.
However, the present study uses the more commonly encountered “standard scale” c.
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ERRATUM

Humphrey Tung and David Benson have caught two errors in our paper, "Precise
tabulation of the maximally-skewed stable distributions and densities," CSDA 23 #3 (Jan.
1997): 307-320. The term in front of the integral in our Equation (11) should have c* in the
numerator instead of the denominator. Also, the first term on the right hand side of our
Equation (12) should be m/(4 |B]), rather than 1/(x |B[). The computations and figures were
nevertheless done with the correct coefficients. The full tabulation is now available by World

Wide Web in addition to FTP, at http://www.econ.ohio-state.edu/jhm jhm.html.
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