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ABSTRACT

The four parameters of a stable distribution may be estimated
consistently from five pre-determined sample quantiles with the
aid of the accompanying tables, for « in the range [0.6, 2.0] and
3 in the range (-1, 1]. The problem of the discontinuity of the
traditional location parameter in the asymmetrical cases as «
passes unity is resolved. The proposed estimators of « and ¢ are
similar to those of Fama and Roll, except that the small asymptot-
ic bias in their estimators has been eliminated, and their re-
strictions that « be no less than 1.0 and that the distribution be
symmetrical have been relaxed. The proposed estimators can pro-
vide good initialization values for other more efficient, but

computer-intensive, methods.

1. INTRODUCTION -

It is often appropriate in applied statistical work to assume

that observable disturbances are the cumulative effect of a large
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number of more or less independent, similarly distributed, contri-
buting disturbances which are themselves unobservable. According
to the Generalized Central Limit Theorem, if the sum of identical-
ly and independently distributed (IID) random variables has a lim-
iting shaped distribution as the number summed approaches infin-
ity, the limiting distribution must be a member of the stable
class, of which the normal distribution is only a special case.
(See Gnedenko and Kolmogorov [1968, 162], Feller [1966 1II, 544},
Zolotarev [1983].) It is therefore natural in such applications
to assume that observable disturbances are drawn from a member of
this generalized class, particularly when, as is often the case,
the presence of leptokurtosis rules out the familiar normal dis-
tribution.

The full stable class is characterized by £four parameters,
usually designated «, B, ¢, and . The traditional location pa-
rameter 8 simply shifts the distribution to the left or right.

The scale parameter c compresses or extends the distribution about

& in proportion to ¢. If the variable x has the stable distribu-
tion S(x; «, 8, ¢, &), the transformed variable z = (x - §)/c will
have the same shaped distribution, but with location parameter O
and scale parameter 1.

The two remaining parameters completely determine the distri-

bution’s shape. The characteristic exponent « lies in the range

(0, 2] and determines the rate at which the tails of the distribu-
tion taper off. When « = 2.0, a normal distribution results, with
mean 8 and variance 2c2. Vhen « < 2, the variance is infinite.
When « > 1, the mean of the distribution exists and is equal to 3.
However, when a« < 1, the tail(s) are so heavy that even the mean
does not exist.

There is almost universal agreement that the fourth parame-
ter, thch determines the skewness of the distribution, should be
designated B and should lie in the range [-1, +1]. Beyond that,
however, there is some often confusing variation, which has led to
what Hall (1981) has characterized as a "comedy of errors." Ve
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adopt here the definition proposed by Zolotarev (1957, 441), in

which the log characteristic functions of the stable distributions

have the form

log E(eIXt)
¢
ist -|ct]® [1 - iB sgn(t) tan 55], a#l

w(t)

(1.1)

2 v

ist -|ct] [1 + iB T sgn(t) log [t]l, «=1.
€

Under this definition, B has the informative property that it

is the 1limiting value of the ratio of the difference of the tail

probabilities to the sum of the tail probabilities:

1im 1 - S(x;a,b,c,d) - S( -x;a,b,c,d) 42, (1.2)
B = 450 1 - S(x;a,b,c,d) + S(-x3a,b,c,d)’ b

When this B is positive, the distribution is skewed to the right.
Yhen it is negative, it is skeved to the left. When § = 0, the
distribution is symmetrical. As « approaches 2.0, B loses its ef-
fect and the distribution approaches the symmetrical normal dis-
tribution vegardless of B.

It should be noted that in 1948 Gnedenko and Kolmogorov in-
troduced a form similar to (1.1), but with the sign on the term
involving B reversed for o« # 1 (1968, 164). This "B" is Eositive.
vhen the distribution is negatively skeved, and negative when the
distribution is positively skewed, except when o« = 1. This unnec-
essarily confusing convention continues to be widely used in
portani papers, including Paulson, Holcomb and Leitch (1975), and

im-

Holt and Crow (1973).
Another parameterization, that is often more convenient for

analytical work than (1.1) (e.g. Zolotarev [1966]), gives the log

characteristic functions for « # 1 as

o(t) = 18t -|ext|® expl-iB* 3 min(ey2-0) sgn(v)]. (1.3)
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This formulation is used initially by Chambers, Mallows, and Stuck
(1976), with B* referved to as "8," though they eventually intro-
duce a "B'" which is equivalent to our B. Parameterization (1.3)
leaves the interpretation of « and 8 unchanged. The g* of (1.3)

may be converted into the B of (1.1) by means of the identity
na n .
B tan 7 = tan[i B* min(e,2-a)], a« # 1. (1.4)

When « = 1, the second half of (1.1) is ordinarily used in con-
junction with (1.3), and therefore B* and B are equivalent in this
case. Note that for a« #1 and B* # 0, the c*x of (1.3) differs
from the ¢ of (1.1):

9
+* 2 (1 v 8 tan’ gg)l/z % (1.5)

(See Zolotarev [1957, 442], DuMouchel [1971, 12].)

Yet other parameterizations have been used, e.g., by Feuer-
verger and McDunnough (1981). In this paper we will employ (1.1),
the formulation recommended as "official"™ by DuMouchel (1971, 6-
14).

The stable distribution and density functions may be calcu-
lated most straightforwardly by means of the proper integral rep-
resentation given by Zolotarev (1964/66). The distribution func-
tion has been tabulated for « = 0.5, 0.6, ..., 1.9, 1.95 with 8 =
-1.00, -0.75, ..., 1.00 by DuMouchel (1971, Appendix), and for « =
1.1, 1.2, ..., 1.9, 1.95 with B = 0 by Fama and Roll (1968). The
density function has been tabulated and graphed by Holt and Crow
(1973) for « = 0.25, 0.5, 0.75, ..., 2.0 and B = -1.00, -.75, ...
1.00 (with the sign of B reversed for « # 1).

A number of methods have been devised for estimating the pa-
rameters of an unknown stable distribution. DuMouchel (1971) has
developed an algorithm which applies the maximum likelihood prin-
ciple to bracketed data. Following Press (1972), Paulson, Holcomb
and Leitch (1975) estimate the four stable parameters by fitting
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the Fourier transform of the data to the characteristic function.
Both these methods are computer-intensive and require initial es-
timates of the parameters. Arad (1980), Koutrouvelis (1980,
1981), and Feuerverger and McDunnough (1981) also exploit the sam-
ple characteristic function. Paulson and Delahanty (1985) inves-
tigate a modified veighted squared error procedure. McCulloch
(1979) has developed a reasonably inexpensive, though computer-
intensive, algorithm which estimates linear regressions with sym-
metric stable disturbances by maximum likelihood without bracket-
ing. Zolotarev (1980) estimates the three parameters a«, B, and ¢
by the method of moments, but requires that the location parameter
be known in advance. Brockwell and Brown (1981) estimate o« and ¢
with high efficiency in the special case « <1, B = 1, 8§ = 0.

In spite of the great efficiency of many of the above-
mentioned methods, much of the empirical work that has been done
in the past two decades has been based instead on the far simpler
method of Fama and Roll (1968, 1971). Using simple functions of
pre-determined order statistics, they are able to estimate § con-
sistently and « and ¢ almost consistently (i.e., with at most a
small asymptotic bias). However, their method is restricted to
the symmetrical case 8 = 0, and is further restricted to « values
in the range [1, 2].

Fieletz and Smith (1972) and Leitch and Paulson (1973) find
evidence of asymmetry in stock price returns. It is therefore de-
sirable to relax the Fama/Roll assumption of symmetry. Further-
more, although we would ordinarily expect the population mean to
exist, we cannot really test this hypothesis unless ve entertain
the possibility that « ljes in at least the upper portion of the
range (0, 1}.

This paper generalizes the Fama/Roll approach to provide con-
sistent estimators of all four parameters, with B8 in its full per-
missible range [-1, 1], and « in the range [0.6, 2]. These esti-
mators are based on simple functions of five pre-determined sample

quantiles and are, like the Fama/Roll estimators, asymptotically
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normal with calculable asymptotic standard errors. Our method
eliminates the small asymptotic bias in the Fama/Roll estimators
of a and c¢; at the same time it relaxes their restrictions on «
and B.

2. ESTIMATION OF « AND B

Suppose we have n independent drawings g from the stable
distribution S$(x;«,B8,c,8), vhose parameters are to be estimated.
Let xp be the p-th population quantile, so that S(x_; «, B, ¢, &)
= p. Let ip be the corresponding sample quantile, suitably cor-
rected for continuity. (If the x; are arranged in ascending or-
der, this correction may be performed by identifying Xy vith iq(i)
where q(i) = (2i-1)/(2n), and then interpolating 1linearly to p
from the two adjacent q(i) values. Vithout such a correction,
spurious skewness will appear to be present in finite samples.)
Then ip is a consistent estimator of xp.

Define

X - X
v =228 05 (2.1)

* X35~ X125

This index in independent of both c and §. Its values as a func-
tion ¢1(a, 8) are tabulated in Table iI. (Tables I , II, and V -
YII are derived from DuMouchel’s tabulation {1971, Appendix] of

the stable distributions.) Let v, be the corresponding sample

value:

%
b

.95 .05
.75 7 T.2s

<
| ]

(2.2)

R
LR
Vo

The statistic %a is a consistent estimator of the index v Since
v, is a strictly decreasing function of «, Qa gives us a strong
fix on «.

Define
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TABLE I

v, = #(x B).

8
« 0700 0.75 0.50 075 1700
2.00 2.439 2.439 2.439 2.439 2.439
1.90 2.512 2.512 2.513 2.513 2.515
1.80 2.608 2.609 2.610 2.613 2.617
1.70 2.737 2.738 2.739 2.742 2.746
1.60 2.912 2.909 2.904 2.900 2.902
1.50 3.148 3.136 3.112 3.092 3.089
1.40 3.464 3.436 3.378 3.331 3.316
1.30 3.882 3.834 3.720 3.626 3.600
1.20 4. 447 4.365 4.171 4.005 3.963
1.10 5.217 5.084 4.778 4.512 4.451
1.00 6.314 6.098 5.624 5.220 5.126
0.90 7.910 7.590 6.861 6.260 6.124
0.80 10.448 9.934 8.779 7.900 7.687
0.70 14.818 13.954 12.042 10.722 10.370
0.60 23.483 21.768 18.332 16.216 15.584
0.50 44.281 40.137 33.002 29.140 27.782
Note that &, (a, -B) = #;(x B).
X g5 * X o5~ 25
“B - . = . = . , (2.3)
.95 ~ X.05

and let QB be the corresponding sample value, defined by analogy
to (2.2). Like v, “B does not depend on either c or 4. It is
tabulated as a function ¢2(a, B) in Table II. This function is
seen to be strictly increasing in B for each «. The statistic %B,
which is a consistent estimator of the index “B’ therefore gives
us a strong fix on B, given what Qu tells us about «.

The relationship

<
[}

¢, («,8), (2.4)
= ¢,(a,B) (2.5)

<
il
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TABLE II
“S = ¢2(a. B).
8
a 0.0 0.25 0.3 0.75 i.0
2.00 0.0 0.0 0.0 0.0
. . 0.0
1.90 0.0 0.018 0.036 0.053 0.071
1.80 0.0 0.039 0.077 0.113 0.148
1.70 0.0 0.063 0.123 0.178 0.228
1.60 0.0 0.089 0.174 0.248 0.309
1.50 0.0 0.118 0.228 0.320 0.390
1.40 0.0 0.148 0.285 0.394 0.4
. . .469
1.30 0.0 0.177 0.342 0.470 0.546
1.20 0.0 0.206 0.399 0.547 0.621
1.10 0.0 0.236 0.456 0.624 0.693
1.00 0.0 0.268 0.313 0.699 0.762
0.90 0.0 0.303 0.573 0.770 0
. . .825
0.80 0.0 0.341 0.634 0.834 0.881
0.70 0.0 0.387 0.699 0.890 0.927
0.60 0.0 0.441 0.768 0.936 0.962
0.50 0.0 0.510 0.338 0.970 0.985
Note that ¢,(x, -B) = -9, (e, B).
may be inverted to yield the relationship
x = "I(Va’\’s)v (2.6)
B = “’2(“¢"’s)' 2.7)

The parameters a and 8 may now be consistently estimated by

:‘ = ‘hl({’ay "B) )

B = "z(i’ur VB).

Tables III and IV show o and 8 as functions of v and v
[+ 3

8"

(2.8)
(2.9)
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TABLE III

8

v, 0.0 0.1 0.2 0.3 0.5 0.7 1.0

2.439 2.0 2.0 2.0 2.0 2.0 2.0 2.0

2.5 1.916 1.924 1.924 1.924 1.926 1.924 1.924
2.6 1.308 1.813 1.829 1.829 1.829 1.829 1.829
2.7 1.729 1.730 1.737 1.745 1.745 1.745 1.745
2.8 1.664 1.663 1.663 1.668 1.676 1.676 1.676
3.0 1.563 1.560 1.553 1.548 1.547 1.547 1.547
3.2 1.484 1.480 1.471 1.460 1.448 1.438 1.438
3.5 1.391 1.386 1.378 1.364 1.337 1.318 1.318
4.0 1.279 1.273 1.266 1.250 1.210 1.184 1.150
5.0 1.128 1.121 1.114 1.101 1.067 1.027 0.973
6.0 1.029 1.021 1.014 1.004 0.974 0.935 0.874
8.0 0.896 0.892 0.887 0.883 0.855 0.823 0.769
10.0 0.818 0.812 0.806 0.801 0.780 0.736 0.691
15.0 0.698 0.695 0.692 0.689 0.676 0.636 0.595
25.0 0.593 0.590 0.588 0.586 0.579 0.363 0.513

Note that wl(va, —vs) = wl(va, vs).

With finite samples, it is possible that Va may be less than
its smallest permissible value of 2.439, and therefore be off§ca1e
in Table III. In this case & should be set equal to 2.0 and B may
be set arbitrarily to signum (QB). It is also possible that sam-
pling error will leag |%B| to be too high to be consistent with
ba. In this case, B should be set to +1.0 and & may consistently
be placed anyvhere between the highest and the lowest value of «

consistent with ba at 8 = +1.0.
Note that in order to allow linear interpolation in Tables

IIT and IV without downward bias of |8| wvhen skewness is nearly
maximal, "virtual values” of a« and B vere obtained by extrapola-

tion off Tables I and II for impermissible (va.vs) pairs adjacent
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TABLE IV
5 = *2(\‘a1 \,6)
Vg

v, 0.0 0.1 0.2 0.3 0.5 0.7 1.0
2.439 0.0 2.160 1.0 1.0 1.0 1.0 1.0
2.5 0.0 1.592 3.390 1.0 1.0 1.0 1.0
2.6 0.0 0.759 1.800 1.0 1.0 1.0 1.0
2.7 0.0 0.482 1.048 1.694 1.0 1.0 1.0
2.8 0.0 0.360 0.760 1.232 2.229 1.0 1.0
3.0 0.0 0.253 0.518 0.823 1.575 1.0 1.0
3.2 0.0 0.203 0.410 0.632 1.244 1.906 1.0
3.5 0.0 0.165 0.332 0.499 0.943 1.560 1.0
4.0 0.0 0.136 0.271 0.404 0.689 1.230 2.195
5.0 0.0 0.109 0.216 0.323 0.539 0.827 1.917
6.0 0.0 0.096 0.190 0.284 0.472 0.693 1.759
8.0 0.0 0.082 0.163 0.243 0.412 0.601 1.596
10.0 0.0 0.074 0.147 0.220 0.377 0.546 1.482
15.0 0.0 0.064 0.128 0.191 0.330 0.478 1.362
25.0 0.0 0.056 0.112 0.167 0.285 0.428 1.274

Note that w.,(Vv , =v,) = -wz(v y Vo). Entries in this table
greater than %.Oaare rgquired in order ?o permit accurate bivari-
ate linear interpolation as B approaches 1.0 from below. As a
result, sampling error in finite samples may yield an interpolated
estimate of B greater than 1.0. In this case, the estimate should

be truncated back to 1.0.

to permissible pairs in Tables III and IV. If the interpolated
value of é from Table IV is greater in magnitude than 1.0, é
should therefore be truncated back to :1.0.

To illustrate the use of Tables III and IV, So (1982, p. 62)
finds the following quantiles for apparent forecasting errors com-
puted by subtracting monthly observations on the log of the 30-day
forwvard exchange rate for the British pound (in terms of dollars)
from the log of the subsequent spot rate during the floating ex-
change rate period July 1973-December 1981:

e e AL A M o SNBSS 10 Y+ Bl otw e

- baw 1 PPt

PR

- b H IS W, W ¢ 15
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~.05413
.50 .00533
.05309

B 354
75 = % gg = -03334

P
L}

.05

" W
[} L}

4]
]

From equations (2.2) and (2.3) (substituting sample quantiles for

population quantiles in the latter), ve have

3.197,
o
v, = -.1091.

<
]

Linear interpolation to these values on Tables III and IV yields:

1.48,
-0.22.

™ 'R
[}

3. ESTIMATION OF THE SCALE PARAMETER

Table V shows the behavior of

X 75 ~ *.25 3.1)

NV 2

c c
and 2.25 are all con-

as a function ¢3(a, g8). Since &, 8, 2.75

sistent estimators of their corresponding population values, the

following is a consistent estimator of c:

% 75 - X 35 G.2)

g = —m—m .

T 488

In the example used above; Ve interpolated to (1.48, 0.0) is
1.940, and to (1.48, ~0.25) is 1.955. Interpolating these Ivo

values to 8 = -0.22 gives 1.953. Thus
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TABLE V

\’C = ¢3(ay 8).

8

« 0.0 0.25 3,50 075 1700
2.00 1.908 1.908 1.908 1.908
1.90 1.914 1.915 1.916 1.918 %:ggg
1.80 1.921 1.922 1.927 1.936 1.947
1.70 1.927 1.930 1.943 1.961 1.987
1.60 1.933 1.940 1.962 1.997 2.043
1.50 1.939 1.952 1.988 2.045 2.116
1.40 1.946 1.967 2.022 2.106
1.30 1.955 1.984 2.067 2.188 §:§§§
1.20 1.965 2.007 2.125 2.294 2.491
1.10 1.980 2.040 2.205 2.435 2.696
1.00 2.000 2.085 2.311 2.624 2.973
0.90 2.040 2.149 2.461 2.886
0.80 2.098 2.244 2.676 3.265 gigig
0.70 2.189 2.392 3.004 3.844 4.775
0.60 2.337 2.635 3.542 4.808 6.247
0.50 7.588 3.073 4.534 6.636 9.144

Note that ¢3(a, -B) = ¢3(a, 8)-

. _ 0.03354

~ 1.953
= 0.01717.

Fama and Roll (1968, 1971) base their estimator of ¢ on the
fortuitous observation that (x.72 - x.28)/c lies within 0.4 per-
?ent of 1.654 for all values of « in the range [1.0, 2.0] when B8
is constrained to 0. This enables them to estimate c¢ with less
than 0.4 percent asymptotic bias by € = (% 72 - b4 )/1.654
vithout first knowing «. They then estimate « b; compéigng the
quantity (if - 21_f)/E to a tabulation of (xf - X f)/c' vhere f
is in the tail region. They find that f = .95, .96,_or .97 wvorks

best for estimating a.
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The Fama/Roll method just described unnecessarily compounds

small asymptotic bias in their estimator of ¢ into their es-
the search for an

the
timator of «. Furthermore, when 8 # 0,
such as the one they found becomes futile. Be-

no asymptotic

invariant range
cause our present method of estimating « and c has
all, it should be used in place of the Fama/Roll method

bias at
This can be done by simply

even when B8 is constrained to zero.
comparing v, to the first column of Table I.

Since our method for estimating the scale parameter does
ve have

not

depend on the constancy of the range used to estimate it,

substituted the
used by Fama and Roll.

"round" interquartile range for the .72-.28 range
Ve do follow Fama and Roll, however, in

basing our estimate of a« on z 95 and k 05" 0f the three values

cited by them as satisfactory for f, we have chosen the smallest,
since it reduces the sampling error of the quantiles with limited

samples. Also, being a round value, it is more likely to have

been routinely collected in prior studies.
ones we have chosen may be slightly more efficient,

s not complete efficiency (vhich can be obtained with maxi-

Other quantiles than

the but our

goal i
mum likelihood) but rather convenience and simplicity.

4. ESTIMATION OF THE LOCATION PARAMETER

Table VI shows the behavior of

s - x
.5
\’5 = -—‘-:——— (3-1)

as a function ¢A(“’ 8). The location parameter § could easily be
were it not for a double singular-
This singularity makes in-

= 1.1, and makes

estimated by ¢ ¢4(&, B) + X 5
ity in ¢4 as « passes 1.0 vhen 8 # 0.
terpolation meaningless betveen « = 0.9 and «

interpolation highly inaccurate unless « is quite far Irom

linear
1.0.
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TABLE VI
Va = ¢“(¢r B)'
B8

@ 0.0 0.25 0.20 0.75 1.00
2.00 0.0 0.0 0.0 0.0 0.0
1.90 0.0 0.023 0.047 0.070 0.094
1.80 0.0 0.051 0.101 0.152 0.202
1.70 0.0 0.084 0.167 0.250 0.331
1.60 0.0 0.126 0.252 0.375 0.495
1.50 0.0 0.184 0.366 0.544 0.717
1.40 0.0 0.269 0.534 0.791 1.041
1.30 0.0 0.407 0.808 1.196 1.573
1.20 0.0 0.679 1.347 1.998 2.631
1.10+ 0.0 1.483 2.949 4.389 5.806
1.00 0.0 @ ® @ ®
1.00 0.0 -0.098 -0.223 -0.283 -0.576
1.00 0.0 —= o - -
0.90 0.0 -1.677 -3.394 -5.159 -6.966
0.80 0.0 -0.865 -1.789 -2.777 -3.820
0.70 0.0 -0.580 -1.243 -1.992 -2.816
0.60 0.0 -0.422 -0.960 -1.613 -2.373
0.50 0.0 -0.311 -0.779 -1.409 -2.198

Note that %(a, -B) = -4>4(a, B).

To solve this problem ve reflect for a moment on the signifi-
cance of the traditional location parameter. When n IID stable
random variables with parameters («,B8,c,8) are averaged, the
resulting mean has a stable distribution with the identical shape,
i.e., with the same « and B. Ve define a focus of stability of a

stable distribution as any quantile which remains stationary under
such _averaging. It can be readily shown from the characteristic
function that the scale parameter of the sample mean will be the

1/a -1

original scale parameter times n This implies that for «

> 1 there will be a unique focus of stability and that the other
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quantiles of the sample mean will converge toward this focus as n
increases. For a < 1 there will again be a unique focus of stab-
ility, and the other quantiles of the sample mean will all diverge
‘rom this focus. In either case, the focus of stability is the
traditional location parameter §, and this parameter is invariant
under averaging.

However, when « = 1, the scale of the sample mean is the same
as the original scale. This implies either that every quantile is
a focus of stability, which is true in the Cauchy case « = 1, B8 =
0, or else that the distribution has no focus of stability at all,
which occurs when B # 0. Vhen « =1 and B > 0, all quantiles
shift an equal amount to the right under averaging, vhile with « =
1 and B < 0, all quantiles shift an equal amount to the left under
averaging. In these cases, the traditional location parameter has
no particular significance. It is merely an arbitrary quantile
that happens to simplify the characteristic function.

The discontinuity which occurs at @ =1 when B # 0 is not so
much a discontinuity in the distribution as it is a discontinuity
in the focus of stability. Relative to any one quantile, e.g.,
the median, all the other quantiles change smoothly as « passes
1. Relative to the quantiles, however, the focus of stability
moves off to +® (-®) as a approaches unity from above, and off to
-®» (+®) as « approaches unity from below, when B > 0 (< 0). The
focus of stability either does not exist (for B # 0) or else
covers the entire real line (for B8 = 0) when « = 1.

Zolotarev (1957, 454) has shown that the distribution of the

random variable

X -~ fc tan %5, e #1
%' = (&..

,d.:l

undergoes no discontinuity, holding §, ¢, and § constant, a3

passes unity. This suggests that we consider the following al‘e:

native location parameter:
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d + Bc tan %5, o #1
C = (4.3)
8, e = 1.
Table VII shows the behavior of
¢ -x
.5
\’c = ——c-—-— (4.4)

as a function ¢5(a, 8). The parameter may now be consistently

estimated by
L=k g+ & 4 B). (4.5)

If somehow we knew that o vas precisely unity, Z would provide us
vith a consistent estimator of §. If « #1, the traditional loca-

tion parameter becomes the unique focus of stability and may be
estimated by

d=00- éé tan gé . (4.6)

Vhen a is far from unity, our estimator for § gives virtually
the same result as would linear interpolation off Table VI. How-
ever, as « approaches unity, § may become quite far from the cen-
ter of the observed sample, and may even lie outside it. If « is
insignificantly different from unity, the true value of § could
lie anyvhere.

In general, { has no particular significance by itself. It
is best thought of as a mere stepping stone that enmables us to
pass easily from the quantiles of the distribution to the focus of
stability. '

In the above example, “C interpolates to 0.060 at (1.48,
-0.22). Therefore

E = 0.00533 + (0.01717)(0.060)
= 0.00635
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TABLE VII
vc = #5(“! 8)'
B ke

a 0.0 0.2% 0.3 0.75 1.00

X 0.0 0.0 0.0 0.0 0.0
1750 0.0 -0.017 -0.032 -0.049 -0.064
1.80 0.0 -0.030 -0.061 ~0.092 -0.123
1.70 0.0 -0.043 -0.088 -0.132 -0.17%
1.60 0.0 -0.056 -0.111 -0.170 -0.232
1.50 0.0 -0.066 -0.13 -0.206 -0.283
24 -0.335

X 0.0 -0.075 -0.154 -0.241 6.3
i.gg 0.0 -0.084 -0.173 -0.276 -0.390
1.20 0.0 -0.090 -0.192 -0.310 -0.447
1.10 0.0 -0.095 -0.208 -0.346 -0.508
1.00 0.0 -0.098 -0.223 -0.383 -0.576
-0.4 -0.652
) 0.0 -0.099 -0.237 0.426 2
8.38 0.0 -0.096 -0.250 -0. 469 -0.742
9.70 0.0 -0.089 -0.262 -0.520 -0.853
0.60 0.0 -0.078 -0.272 -0.581 -0.997
0.50 0.0 -0.061 -0.279 -0.659 -1.198

Note that ¢5(a, -8) = -¢5(¢, 8).

and

< 1.48n
0.00635 - (0.22)(0.01717) tan 5

0.00233.

on
[}

Fama and Roll use the .5 truncated mean as their estimator of
§. VWhen B #0 (and a > 1), this statistic is no longer an unbias-
ed estimator of 8. An estimator of §, again using { as a stepping
stone, could be constructed on the basis of the .5 truncated mean,
and would undoubtedly be a little more efficient than our estima-
tor, at least for « > 1. In the interest of simplicity, however,
ve prefer to base our estimator on the more readily available

median.
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A call to IMSL subroutine GGSTA (based on Chambers, Mallows
and Stuck [1975]) produces a quasi-random stable variate with
"BPRIME" equal to our B, ¢ = 1, and our ¢ = Q (not & = 0).

5. ASYMPTOTIC VARIANCES AND COVARIANCES

Let *p and *q be the p-th and g-th quantiles of a sample of
size n drawn from a standardized stable distribution with shape
parameters « and B and withc =1 and § = 0. Let s(x) be the
probability density function for this distribution. For p £ q,
and n large (see e.g. Kendall and Stuart [1958, 330]),

(1-q)

cov(X_,% ) = .
P q ﬂS(Xp)s(xq)

(5.1)

Let pl,...,p5 equal .05, .25, .50, .75, .95 and let C be the 5 x 5
matrix whose typical element cij is cov(ip., X _). The constants
multiplying 1/n in this matrix may be evalaatedeor « = 0.5, 0.75,
«eey 2.00, and 8 = 0.0, 0.25, ..., 1.0 using the stable density
tables of qut and Crow (1973). (Vhenever the densities in Holt
and Crow’s 4-place tables dropped below .0004, as happened occa-
sionally with o« = 0.5, the first term of the Bergstrm expansion
[1952] was substituted.)

For interior va;ues of the parameter space, the asymptotic
covariance matrix of our parameter estimates may be obtained by

standard methods (see, e.g., Goldberger [1964, 125]). Let 01,

-

62,..., 96 represent @, B, ¢, 8§, , i.S’ and let B be the matrix
vhose typical element is
,
ij =% |&x =x ° 5.2)
Py
Ve have evaluated this matrix by means of small perturbations of
the population quantiles. The 6 x 6 matrix

V = nBTCB (5.3)
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gives the normalized asymptotic variances and covariances for ¢ =
1 and sample size of 1. The 6 x 6 asymptotic variance-covariance
matrix I may be calculated from these constants by means of

£ - n~lovp, (5.4)

vhere D = (dij)’ d11 and d22 (corresponding to « and B) both equal

L d33’ daa'
equal c, and dij = 0 othervise.

The normalized asymptotic standard deviations of the

d55, and d66 (corresponding to ¢, §, L, and x.s) all

parameter estimates, which are the square roots of the main
diagonal elements of V, are tabulated in Table VIII. For com-
parison, panels a), c), and f) of Table VIII show in parentheses
the approximate asymptotic standard deviation of the Fama/Roll es-
timators of « (f = .95), ¢, and 8. Since our estimators of o and
¢ are based on very nearly the same information as Fama and
Roll’s, the asymptotic variances of these two estimators are vir-
tually unchanged. However, our estimator of & (= i.S vhen B = 0)
undergoes a 5 to 19% loss of efficiency.

Selected correlation coefficients

.. ..
ij o, _ 33 ' (5.5)

v..V.. V0,.0..
ii'3j ii 33

are tabulated in Table IX for B > 0. Correlation coefficients in-
volving a or & on thg one hand and 8, 8, {, or % 5 on the other
hand are odd functions of B. All other correlation coefficients

are even functions of B.

In the example given above, the sample size was 100. The as-

: A 172 .
ymptotic standard deviations 9 = %y of the parameter estimates

are then
6. = 2.06¢100)°22 . .204
* -172
o3 = 3.16(100) - .316
o = 1.319(.01717)(100) /2 - .00226
o} = 3.42(.01717)(100)" /% - .o0s88.
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.00
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TABLE VIII

Normalized Asymptotic Standard Deviations

172

b. Skewness parameter (8)

o
2.00°
.75
.50

.25
.00
.75
.30

[ el  l

0N

of Parameter Estimates (vii )
a. Characteristic exponent (&)
8
0.00 (0.00)%  0.25 0.50 0.75 1.00”
4.02 (3.56)°  4.02 4.02 4.02 4.02
2.81 (2.71) 2.85 2.93 3.05 3.17
1.97 (2.10) 2.07 2.33 2.64 2.85
1.65 (1.68) 1.79 2.03 2.42 2.55
1.42 (1.37) 1.56 1.87 2.16 2.16
1.12 1.41 1.53 1.77 1.65
1.32 1.54 1.73 1.70 1.75
<]
0.00 0.25 0.50 0.75 1.00”
6.22 6.92 8.75 11.59 14.42
3.46 3.15 3.23 4.95 6.21
3.05 2.77 2.37 3.30 3.591
2.93 2.62 2.09 2.12 2.70
3.02 2.65 1.91 2.28 2.16
3.38 3.21 2.57 3.55 1.94
Scale parameter (&)
8

0.00 (0.00)¢  0.25 0.50 0.75 1.00”
1.26 (1.27) 1.26 1.26 1.26 1.26
1.25 (1.29) 1.24 1.23 1.22 1.30
1.28 (1.35) 1.31 1.38 1.27 1.36
1.38 (1.42) 1.48 1.55 1.44 1.56
1.65 (1.59) 1.86 2.37 3.18 2.08
2.15 3.29 3.36 2.63 2.95
3.36 6.30 6.46 4.95 4.89

Notes:

calculated as s(&)vN, for N = 599 (1971, p. 333).

®Derived Fama/Roll value of 2.08 adjusted by
compensate for truncation of their estimator at « = 2

CApproximate as
calculated as o(Q)VN

Approximate asymptotic standard deviation of Fama/Roll &

.95

2/ (n-1) to

ymptotic standard deviation of Fama/Roll é,
» for N = 599 (1971, p. 332).

(continued ...)

s Sy o——

RPN

o~

TABLE VIII (Continued)

d. Traditional location parameter (&)

8
0.00 0.25 0.50 0.75 1.00"
o .

- 1.77 1.77 1.77 1.77
z.gg ;'g; 2.09 2.13 2.20 z.gg
1'% 3.06 3.03 3.81 3.84 636
1725 6.71 8:09 1.0l 175 18
1.00" ® ® ®
1700 170 7% 137 735 787
39 8 6.9 1.77 23.09  29.33
8'23 ?'33 g:ss 6.41 12.60  17.32
e 4 6

0.00 0.25 0.50 0.75 1.00"
[+ 3 .

- 1.77 1.77 1.77 1.77 ;.;g
2 2.18 2.21 2.22 2.30 .33
" 1.98 1.98 2.05 2.23 2. 5
1129 1.85 1.87 1.93 2.22 2.42
e 1.70 1.74 1.87 2.35 2.8
599 1.46 1.77 2.01 3.15 4.00
8';3 0.9 1.96 2.70 5.94 6.98
f. Median (i_s) .

« 0.00 0.000¢  0.25 0.50 0.75 1.:3
77 1.77 1.

- 1.77 (1.43) 1.77 1.
i'gg 1.76 (1.44) 1.77 1.77 i.gz i.gg
1.50 1.74 (1.45) 1.75 1.79 1.8 1.90
1.25 1.69 (1.47) 1.72 1.79 1.89 2.01
1.00 1.57 (1.49) 1.67 1.88 13 2.44

: 1.32 1.62 2.14 2. 3.37
8';3 0.79 1.43 2.42 3.65 )
Note:

Approximate asymptotic 101 (1968, p.
as s(E)vn, for n = ' .
truncated me:ﬁénczlgzligggtrainéd to’O as in Fama/Roll, the median

becomes our estimator of &.

Note that

standard deviation of Fama/Roll .5

831).
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TABLE IX

Asymptotic Correlation Coefficients

- ——- L ———

8
0.0 WE 3.50 VE I
0.77 0.77 0.77
) ) 0.77
0.4 0.64 0.64 0.64 8'
.46 0.49 0.60 0.54 0.
0.32 0.42 0.52 0.55 0.
8.35 0.45 0.71 0.88 0.
.37 0.63 0.70 0.62 0.
0.49 0.71 0.76 0.53 0.
8
9.0 0.25 0.50 75 I
0.00 0.00 0.00
0.00 -0.10 -0.17 gg -g'
0.00 -0.3 -0.65 63 -0.
0.00 -0.68 -0.88 -93 -0.
0,00 013 0.3 7T "N
0.00 -0.31 -0.89 9
i %6 -
0.00 0.1 -0.77 85 o
8
0.0 0.75 0.50 75 1
0.00 0.26 0.46
0.00 0.04 0.19 :ig 8'
0.00 -0.28 -0.10 39 0.
0.00 -0.31 -0.33 34 0.
0.00 -0.66 -0.37 46 0.
0.00 -0.74 -0.52 29 0.
5 g
) 0.25 0.50 75 1.
0.00 ©0.00 0.00
0.00 0.01 0.05 :89 8'
0.00 ~0.07 -0.18 .01 -0.
0.00 -0.33 -0.38 .36 -0.
0.00 0.73 073 75 5
0.00 0.08 -0.69
0.00 0.27 -0.55 :;3 :g:
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.95 confidence interval for the characteristic
from 1.08 up to 1.88, so wve may tentatively re-

Strictly speaking, ve may only make comparisons

An approximate
exponent extends

ject normality.

on the interior of the parameter space, but since we may reject

values of « under 2.0, ve are also justified in ruling out 2.0 it-
self. We may reject a« = 1.0, but not by far.
An approximate .95 confidence interval for B extends from

_0.40 to 0.84. Ve may therefore reject maximal skewing, in par-

ticular negative maximal skewing, but not symmetry. The estimate

of & is less than half ag, so we may not reject the hypothesis

that the log forward exchange rate is an unbiased predictor of the

log spot exchange rate.
Note that if « were insignificantly different from 1.0,

ing at all could be said about the location of the mean, since we

noth-

could not then reject the hypothesis that the mean does not exist.
tven if o differs significantly from 1.0, as becomes quite large

as « approaches unity. The parameter C and the median, on the

other hand, are quite well defined in this vicinity. Thus the

location of the distribution may be quite clear even when very
little, if anything, may be said about its "location parameter.”

The correlation coefficients of greatest interest are p..,

The first of these is positive because a ran-

Pas Pgar 24 Peg
e will tend to produce high estimates

domly high interquartile rang
of both ¢ and «. Thus if we are concerned about estimating the

tail probabilities, the error in our estimate of « will to some

extent be compensated for by an offsetting error in ¢.
The correlation between & and & is negative for positive B

e of the powerful effect of «

(and positive for negative B) becaus
therefore

on the term -fc tan (Ra/2) that separates § from { and
The same term causes pék to be

too large. This
that B = 0 would

from the vicinity of the median.

positive for « > 1.0, at least when |8] is not

correlation implies that a priori knowledge

greatly enhance our ability to make inferences about &, par-

ticularly when a is just above 1.0.
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TABLE X

Asymptotic Efficiency of Simple Consistent Estimators

a. Estimator of a« b Estimato fB8
. ro
8
@ 0.0 0.5 1.07 a 0.0 g 5 1.0
2.00° 0.0 0.0 0 - . |
i ) .0 2.00
1.7 i 0.60  0.26
L.75 8'21 0.23  0.13 1.75  0.60 0.26 0.0
1.50 0.61 8.41 0.19 1.50  0.77  0.69 0'0
L 0.6 044 0. 1.25  0.54  0.83 0'8
100 0.60 33 0.09 1.00  0.35  0.73 '
) 0.26  0.01 0.75  0.19  0.41 8’8
c. Estimator of ¢ d Estimato f s
. ro
8
o 3.0 9.5 10" « 9.0 g 5 1.0
2.000  0.31 0.31 |
X ) 0.31 2.00” ;
2.0 .00" 0.
1.53 8.;; 0.56  0.41 1.75 o.gg 8'?3 S et
150 0.71 8.53 0.44 1.0  0.76  0.61 8'64
1.25 0.81 .59 0.40 1.25 0.56  0.49 33
L0077 035 01 1.00  0.73 a2
X 0.25  0.23 0.7 b 5.52° 0.02
s 0.30° 0.52° 0.02°
Notes:

a
DuMouchel gives no v
. . alue for th i
tion of the maximum likelihood estima: asymptotic standard devia-
cases. or of & (sC) for these

b
Based on DuMouchel’s val
; ues £ = ici
actually a little smaller than indiggt:a. 0-8. True efficiency is

It 1s 1nterestin that P 1S negative fo: pOS]- ive a

app[oaches 1.0 fIOm abOUe, in Splte Of the fact that the term Sep"

arati i i
N ing & from  is proportional to ¢. This is apparentl
et L y more
offset by the strong positive value of P.., coupled wi
strongly negative value of p-é. e ’ v e
a

STABLE DISTRIBUTION PARAMETERS 1133

6. ASYMPTOTIC EFFICIENCY

Table X shows the asymptotic efficiency of our estimators of
This is calculated as the ratio of the asymptotic

as reported by Du-
DuMouchel’s values

«, B, c, and 3.
variance of the maximum likelihood estimates,

Mouchel (1975, 388), to that of our estimates.
were graphically interpolated (and occasionally extrapolated, from

« = 0.8 to 0.75) to the characteristic exponent values in the Holt

and Crow density tabulation. and o

DuMouchel’s values for 9, c
em to be out of line for B = 0.5 and 1.0 at « = 1.1, and so vere

se =
not employed.

For example, at a = 1.9 and B = 0, the normalized asymptotic

e maximum likelihood estimate of a is

standard deviation of th
The efficiency of our

1.54, while that for our estimator is 1.97.
estimator is therefore (1.54/1.97)2 - 0.61. Using our estimator
of « instead of a maximum 1ikelihood estimate is thu
397 of the sample, for

s equivalent,

with a very large sample, to a loss of
these particular shape parameters.
The zero asymptotic efficiency of our estimators of « as

2.0 from below and of B as B approaches 1.0 from below
s observation that maximum

o«

approaches
(or -1.0 from above) reflects buMouchel’

likelihood is nsuper-efficient” in these cases, in the sense that
it has a zero asymptotic standard deviation. The absence of one
parently so distinctive in an infinite
¥ith a finite sam-
f course

or both Paretian tails is ap
sample that these cases stand by themselves.
ple, the maximum likelihood estimators of « and B would o
have a positive sampling error, even in these cases, and use of
would be equivalent to only a finite loss of sam-

our estimators
t the asymptotic efficiency of

It should be remembered tha

ple.
stimator of & is zero for « € 2.0, even

least squares as an €
though the sample mean can still provide very valuable informat:on

about & as long as « > 1 (McCulloch 1980).
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7. _CONCLUDING REMARKS

rhe tech“lque ve have p!esellted in thls papez Collslste“tly
eStlu‘IatES the four Stable dlstzlbutlo" pa!aﬂleters Ulth Ollly mini

mal i
calculations. The loss of asymptotic efficiency ranges from

a ry .
S llttle as 192 to as llluch as lOOZ (1“ certain bounda CaSeS)
Even
in the latter cases our method pr091des useful estll'llates wlth
inite
f Samples. Ue hope that the avallablllty Of these estlmators

facili ,
acilitates future research into these important distributions
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