Supporting Information: The $\widetilde{A}-\widetilde{X}$ Absorption of Vinoxy

Radical Revisited: Normal and Herzberg-Teller Bands

Observed via Cavity Ringdown Spectroscopy

Phillip S. Thomas, Rabi Chhantyal-Pun, Neal D. Kline, and Terry A. Miller

Department of Chemistry

The Ohio State University

120 W. 18^{th} Avenue

Columbus Ohio 43210

E-mail: tamiller@chemistry.ohio-state.edu.

December 17, 2009

Table of Contents

- 1. Figure 1: Comparison of experimental spectra of vinoxy generated from photolysis of MVE and EVE.
- 2. Figure 2: Vinoxy kinetic tests: 0_0^0 , 12_0^1 , and 11_0^1 bands measured at different excimer-probe delay times.
- 3. Table 1: Unscaled harmonic and fundamental frequencies for vinoxy in \widetilde{X} and \widetilde{A} states.
- 4. Table 2: Squared Duschinsky rotation matrix elements for the vinoxy $\widetilde{A} \widetilde{X}$ transition.
- 5. Table 3: Energies and cartesian coordinates of optimized geometries.
- 6. Table 4: Input parameters for rotational simulations.

Figure 1: Cavity ringdown spectra of vinoxy radical obtained from 193 nm photolysis of methyl vinyl ether and ethyl vinyl ether. The traces have been vertically offset for clarity.

Figure 2: Cavity ringdown spectra of the 0_0^0 , 12_0^1 , and 11_0^1 bands of vinoxy, obtained at a variety of excimer-probe delay times. Traces taken using different delay times are vertically offset for clarity.

Table 1: Unscaled harmonic and fundamental frequencies calculated at the UB3LYP/aug-cc-pVTZ level, and unscaled harmonic frequencies calculated at the UCCSD/cc-pVDZ level for \tilde{X} and \tilde{A} state equilibrium structures of vinoxy. The number in bold at the head of each column is the zero point energy. All values are in cm⁻¹.

	UB3LYP/a	CCSD/cc- $pVDZ$				
\widetilde{X} state		\widetilde{A} s	tate	\widetilde{X} state	\widetilde{A} state	
Harm.	Anharm.	Harm. Anharm.		Harm.	Harm.	
9300.458	9153.934	9349.477	9208.499	9365.504	9549.776	
3253.254	3110.845	3271.782	3122.815	3301.464	3314.785	
3142.389	3037.551	3173.002	3011.285	3177.784	3207.411	
2944.320	2734.835	2990.651	2802.758	3000.627	3118.580	
1544.506	1521.109	1596.294	1483.422	1604.900	1711.401	
1474.959	1392.421	1440.181	1411.417	1478.933	1444.244	
1397.612	1364.090	1240.630	1207.616	1409.018	1279.028	
1160.745	1132.719	1082.818	1062.913	1155.749	1103.286	
979.915	959.504	971.444	959.674	973.589	972.002	
507.107	500.363	432.295	434.657	499.994	439.959	
982.477	955.535	957.023	940.567	978.898	965.165	
767.526	718.298	827.052	790.458	709.024	818.422	
446.106	421.141	715.781	700.473	441.030	725.271	

Table 2: (Squared) values of Duschinsky rotation matrix elements. Rows and columns are indexed by \tilde{X} and \tilde{A} state frequencies (cm⁻¹), respectively. Duschinsky matrices have been computed in the harmonic approximation but are indexed by unscaled fundamental frequencies (B3LYP/aug-ccpVTZ) and unscaled harmonic frequencies (CCSD/cc-pVDZ).

	B3LYP/aug-cc-pVTZ											
$\Downarrow \widetilde{X}/\widetilde{A} \Rightarrow$	3123	3011	2803	1483	1411	1208	1063	960	435	941	790	700
3111	0.981	0.015	0.000	0.001	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3038	0.015	0.981	0.000	0.000	0.000	0.000	0.000	0.003	0.001	0.000	0.000	0.000
2735	0.000	0.000	0.995	0.001	0.001	0.003	0.000	0.000	0.000	0.000	0.000	0.000
1521	0.000	0.000	0.003	0.130	0.218	0.247	0.347	0.046	0.007	0.000	0.000	0.000
1392	0.003	0.000	0.000	0.437	0.428	0.093	0.028	0.007	0.003	0.000	0.000	0.000
1364	0.001	0.000	0.001	0.008	0.140	0.316	0.514	0.002	0.017	0.000	0.000	0.000
1133	0.000	0.000	0.000	0.306	0.166	0.338	0.070	0.100	0.019	0.000	0.000	0.000
960	0.000	0.003	0.000	0.114	0.045	0.001	0.001	0.833	0.004	0.000	0.000	0.000
500	0.000	0.001	0.000	0.003	0.000	0.001	0.038	0.009	0.947	0.000	0.000	0.000
956	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.466	0.364	0.169
718	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.434	0.566	0.000
421	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.100	0.070	0.827
					(CCSD/c	c-pVD	Ζ				
$\Downarrow \widetilde{X}/\widetilde{A} \Rightarrow$	3315	3207	3119	1711	1444	1279	1103	972	440	965	818	725
3301	0.988	0.009	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3178	0.009	0.982	0.005	0.001	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000
3001	0.000	0.005	0.989	0.002	0.001	0.003	0.001	0.000	0.000	0.000	0.000	0.000
1605	0.000	0.000	0.002	0.188	0.167	0.246	0.328	0.065	0.003	0.000	0.000	0.000
1479	0.002	0.000	0.001	0.355	0.444	0.109	0.082	0.004	0.004	0.000	0.000	0.000
1409	0.001	0.000	0.003	0.003	0.250	0.223	0.510	0.000	0.011	0.000	0.000	0.000
1156	0.000	0.000	0.000	0.320	0.105	0.415	0.052	0.095	0.013	0.000	0.000	0.000
974	0.000	0.002	0.000	0.129	0.032	0.004	0.002	0.827	0.004	0.000	0.000	0.000
500	0.000	0.001	0.000	0.003	0.000	0.001	0.024	0.007	0.963	0.000	0.000	0.000
979	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.572	0.200	0.226
709	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.340	0.626	0.034
441	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.087	0.174	0.737

	\widetilde{X} s	tate: E (B3	LYP/aug-o	ec-V	TZ) = -153	.236833306		
Equilibrium geometry Vibrationally averaged geomet						geometry		
Η	2.089798	-0.205347	0.000000	Н	2.092483	-0.207670	0.000000	
\mathbf{C}	1.055993	-0.521813	0.000000	C	1.061325	-0.525054	0.000000	
Η	0.822507	-1.577468	0.000000	H	0.829568	-1.582532	0.000000	
\mathbf{C}	0.000000	0.426702	0.000000	C	-0.001665	0.428965	0.000000	
Н	0.284753	1.492346	0.000000	Н	0.287066	1.503607	0.000000	
0	-1.191627	0.107642	0.000000	0	-1.195138	0.108132	0.000000	
\widetilde{A} state: E (B3LYP/aug-cc-VTZ) = -153.202871425								
	Equilib	rium geome	etry	V	ibrationally	vaveraged g	geometry	
Η	2.071359	0.168304	0.000000	Н	2.078285	0.170667	0.000000	
\mathbf{C}	1.126235	-0.347896	0.000000	C	1.132264	-0.348627	0.000000	
Η	1.111252	-1.426765	0.000000	H	1.117339	-1.431672	0.000000	
\mathbf{C}	0.000000	0.366576	0.000000	C	-0.001888	0.364566	0.000000	
Η	0.020091	1.465201	0.000000	H	0.016169	1.473117	0.000000	
0	-1.245014	-0.039853	0.000000	0	-1.248694	-0.038135	0.000000	
	4	\widetilde{X} state: E ((CCSD/cc-	VD	Z) = -152.74	4437557		
	Equilib	rium geome	etry					
Η	2.112481	-0.250739	0.000000					
\mathbf{C}	1.058737	-0.550477	0.000000					
Η	0.794016	-1.613521	0.000000					
\mathbf{C}	0.000000	0.433565	0.000000					
Η	0.319631	1.502946	0.000000					
0	-1.197319	0.132848	0.000000					
\widetilde{A} state: E (CCSD/cc-VDZ) = -152.70931149								
	Equilib	rium geome	etry					
Η	2.095825	0.183697	0.000000					
\mathbf{C}	1.136816	-0.338309	0.000000					
Η	1.119154	-1.431802	0.000000					
\mathbf{C}	0.000000	0.385470	0.000000					
Η	0.003584	1.490875	0.000000					
Ο	-1.254932	-0.065716	0.000000					

Table 3: Electronic energies (a.u.) and cartesian coordinates (Å) for equilibrium and vibrationally averaged structures of vinoxy.

Table 4: Input parameters used for simulations of the rotational contours of vinoxy. Rotational constants were obtained from the anharmonic vibrationally-averaged structures calculated at the UB3LYP/aug-cc-pVTZ level; all spin rotation parameters are set to the \tilde{X} state values experimentally determined by Endo and Hirota.¹

Constants	\widetilde{X} state \widetilde{A} stat						
A	(cm^{-1})	2.228988	2.539000				
В	(cm^{-1})	0.381607	0.364225				
C	(cm^{-1})	0.325206	0.317865				
ε_{aa}	(cm^{-1})	-0.029987	-0.029987				
ε_{bb}	(cm^{-1})	-0.002205	-0.002205				
ε_{cc}	(cm^{-1})	-0.000022	-0.000022				
$\frac{\varepsilon_{ab} + \varepsilon_{ba}}{2}$	(cm^{-1})	0.002813	0.002813				
Control parameters							
T ₀₀	8017						
Doppler Linewidth	(cm^{-1})	1					
Natural Linewidth	(cm^{-1})	0.004					
Temperature	(K)	298					
J_{max}	110						
ΔK_{max}	10						

References

[1] Y. Endo and E. Hirota, J. Mol. Spectrosc. **127**, 535 (1988).