MODE-SPECIFICITY AND NON-RRKM KINETICS IN THE CONFORMATIONAL ISOMERIZATION OF 4-CHLOROBUT-1-YNE

<u>JOHN KESKE</u> and B. H. PATE, *Department of Chemistry, University of Virginia, McCormick Rd., P.O. BOX* 400319 Charlottesville, VA 22904.

We have measured the rate of conformational isomerization of 4-chlorobut-1-yne at an energy of 3330 cm⁻¹ above the zero-point level through the rotational spectroscopy of single molecular eigenstates. From the spectrum of the J=3-J=4 rotational transition of several eigenstates in this energy region we measure a unimolecular conformational isomerization rate of 1.2×10^{10} s⁻¹. This rate is more than two orders-of-magnitude slower than the rate calculated using RRKM theory: 1×10^{13} s⁻¹. Furthermore, from the eigenstate-resolved rovibrational spectrum of the acetylenic C-H stretch we find that there is strong mode-specificity in the isomerization rate. Coherent preparation of the acetylenic C-H stretch of 4-chlorobut-1-yne leads to even slower isomerization with an upper limit of the rate set by the measured rate of intramolecular vibrational energy redistribution: 3.3×10^8 s⁻¹.