IR SPECTRUM OF THE CO-N₂ COMPLEX: ASSIGNMENTS FOR CO-*para*N₂ AND OBSERVATION OF A BEND-ING STATE FOR CO-*ortho*N₂

CHANGHONG XIA, <u>A.R.W. McKELLAR</u>, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada; YUNJIE XU, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.

The infrared spectrum of the weakly-bound complex CO-N₂ has been studied using a pulsed supersonic slit-jet and a rapid-scan tunable diode laser. A mirror system giving 182 passes of the laser through the jet helped to give improved spectra with lower effective rotational temperatures (0.5 to 4 K) and less interference by CO dimer transitions. In the case of the CO-*para*N₂ spin modification, for which only one subband was previously^{*a*} known, over 10 linked subbands were assigned in terms of three ground ($v_{CO} = 0$) state stacks of levels (with K = 0 and 1), and 7 excited state ($v_{CO} = 1$) stacks (with K = 0, 1, and 2). The infrared analysis relied on precise ground state energy level differences obtained from microwave data.^{*b*} There is a strong Coriolis interaction between the K = 0 and 1*e* stacks of levels in both the ground and excited states. However, their energy ordering changes, with K = 0 being lower for $v_{CO} = 0$, and K = 1 being lower for $v_{CO} = 1$. For the more abundant nuclear spin modification of the complex, CO-*ortho*N₂, an excited bending state was observed for the first time. The bending frequency is 4.67 cm⁻¹.

^aY. Xu and A.R.W. McKellar, J. Chem. Phys. **104**, 2488 (1996).

^bY. Xu and W. Jäger, J. Chem. Phys., submitted (2000).