Laser-induced fluorescence spectra of the $B \rightarrow X$ system of the potassium-lithium molecule have been recorded on a Fourier transform interferometer. The molecules were excited with a tuneable, single-mode cw dye laser operating with Rhodamine 110 or Coumarine 6 dye, and the spectra recorded in the range 12500 - 18500 cm$^{-1}$ at a resolution of 0.05 cm$^{-1}$. Vibrational levels up to $v = 46$ are observed for the main isotopomer, 39K7Li.

Ground state energies have been fitted to a Dunham polynomial expansion, and also directly to a pointwise potential curve. Both approaches fit the data with a root-mean-square error of 0.005 cm$^{-1}$. The data define the ground state potential curve accurately out to about 7 Å. The dissociation energy of the ground state D_e is estimated to be $D_e = 6216 \pm 2$ cm$^{-1}$, and the highest vibrational level $v_{max} = 50$ for the main isotopomer.

Very weak transitions around 12600 cm$^{-1}$ are tentatively assigned as bands of the $2^3\Sigma^+ \rightarrow 1^3\Sigma^+$ transition, observed as collisionally induced fluorescence.