THE PURE ROTATIONAL SPECTRUM OF CuCH₃

D. T. HALFEN, Department of Chemistry, Department of Astronomy, and Steward Observatory, University of Arizona, Tucson, AZ, 85721; D. B. GROTJAHN, Department of Chemistry, San Diego State University, San Diego, CA, 92182; and L. M. ZIURYS, Department of Chemistry, Department of Astronomy, and Steward Observatory, University of Arizona, Tucson, AZ, 85721.

The pure rotational spectrum of $CuCH_3$ (\tilde{X}^1A_1) has been measured with millimeter-wave direct absorption techniques in the frequency range of 312 to 543 GHz. This work is the first spectroscopic observation of monomeric $CuCH_3$ in the gas-phase. Measurements have been made of the two Cu isotopomers, ^{63}Cu and ^{65}Cu , in the ground and v_3 =1 (the Cu-C stretch) vibrational states. Copper monomethyl was formed by the reaction of Cu vapor produced in a Broida-type oven and $Sn(CH_3)_4$. Ten transitions of both isotopomers have been recorded with K components up to 13. Additional work is being conducted on $Cu^{13}CH_3$ and $CuCD_3$. From this data, spectroscopic constants and structural information are being determined. Establishing the geometry of copper monomethyl is significant for organometallic chemistry.