FIRST OBSERVATION OF THE SPIN-ORBIT INTERACTION BETWEEN THE \tilde{X} ¹ A_1 AND THE \tilde{a} ³ B_1 STATES of SiH₂ BY STIMULATED EMISSION PUMPING SPECTROSCOPY

H. ISHIKAWA, Y. MURAMOTO, and N. MIKAMI, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

The energy separation and order between the triplet and the singlet electronic states have been one of the central issues of SiH₂ radical from both chemical and spectroscopic points of view. However, any rotationally and/or vibrationally resolved observation of the triplet $(\tilde{a} \ ^{3}B_{1})$ state has not yet been reported. Since the \tilde{a} state is considered to be located ~7000 cm⁻¹ above the singlet ($\tilde{X} \ ^{1}A_{1}$) state, it is expected that an effect of the singlet-triplet interaction appears among highly excited vibrational levels of the \tilde{X} state. Thus, we have carried out the stimulated emission pumping (SEP) spectroscopy of SiH₂ in the vibrational energy region up to 10000 cm⁻¹. In this paper, we will report an observation of a small but a definitive perturbation due to the singlet-triplet interaction in the SEP spectrum. We have observed fifty-one vibrational levels in the vibrational energy region of 4800–10000 cm⁻¹. Due to strong $1\nu_{1}:2\nu_{2}$ Fermi and $2\nu_{1}:2\nu_{3}$ Darling-Dennison resonances, vibrational levels having the same polyad quantum number, $P = 2v_{1} + v_{2} + 2v_{3}$, construct polyad structures. The vibrational levels observed belong to polyads of P = 5 - 10. In the case of $P \leq 9$, all the vibrational energies observed were fitted very well by the effective Hamiltonian model in which the above resonances were considered. In the case of the P = 10 polyad, however, an unexpected splitting of the band was observed. It was confirmed that this splitting is due to the spin-orbit interaction between the \tilde{X} and the \tilde{a} states based on the rotational dependence of this perturbation. The internal energy of the triplet state observed was about 9645 cm⁻¹ measured from the (000) level of the \tilde{X} state. This level is tentatively assigned as (030), based on the theoretical calculation^a. Details of the analysis will be discussed at the presentation.

^aW. GABRIEL et al., Chem. Phys. **174**, 45 (1993).