FIRST OBSERVATION OF THE SPIN-ORBIT INTERACTION BETWEEN THE $\tilde{X}{ }^{1} A_{1}$ AND THE $\tilde{a}{ }^{3} B_{1}$ STATES of SiH_{2} BY STIMULATED EMISSION PUMPING SPECTROSCOPY

H. ISHIKAWA, Y. MURAMOTO, and N. MIKAMI, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

The energy separation and order between the triplet and the singlet electronic states have been one of the central issues of SiH_{2} radical from both chemical and spectroscopic points of view. However, any rotationally and/or vibrationally resolved observation of the triplet $\left(\tilde{a}^{3} B_{1}\right)$ state has not yet been reported. Since the \tilde{a} state is considered to be located $\sim 7000 \mathrm{~cm}^{-1}$ above the singlet $\left(\tilde{X}^{1} A_{1}\right)$ state, it is expected that an effect of the singlet-triplet interaction appears among highly excited vibrational levels of the \tilde{X} state. Thus, we have carried out the stimulated emission pumping (SEP) spectroscopy of SiH_{2} in the vibrational energy region up to $10000 \mathrm{~cm}^{-1}$. In this paper, we will report an observation of a small but a definitive perturbation due to the singlet-triplet interaction in the SEP spectrum. We have observed fifty-one vibrational levels in the vibrational energy region of $4800-10000 \mathrm{~cm}^{-1}$. Due to strong $1 \nu_{1}: 2 \nu_{2}$ Fermi and $2 \nu_{1}: 2 \nu_{3}$ Darling-Dennison resonances, vibrational levels having the same polyad quantum number, $P=2 v_{1}+v_{2}+2 v_{3}$, construct polyad structures. The vibrational levels observed belong to polyads of $P=5-10$. In the case of $P \leq 9$, all the vibrational energies observed were fitted very well by the effective Hamiltonian model in which the above resonances were considered. In the case of the $P=10$ polyad, however, an unexpected splitting of the band was observed. It was confirmed that this splitting is due to the spin-orbit interaction between the \tilde{X} and the \tilde{a} states based on the rotational dependence of this perturbation. The internal energy of the triplet state observed was about $9645 \mathrm{~cm}^{-1}$ measured from the (000) level of the \tilde{X} state. This level is tentatively assigned as (030), based on the theoretical calculation ${ }^{a}$. Details of the analysis will be discussed at the presentation.

[^0]
[^0]: ${ }^{a}$ W. GABRIEL et al., Chem. Phys. 174, 45 (1993).

