HIGH-RESOLUTION CAVITY ENHANCED ABSORPTION SPECTROSCOPY OF CARBON DIOXIDE AND METHANE AT 1.5 $\mu \mathrm{m}$

TONGMEI MA, HONGBING CHEN, <u>A. S-C. CHEUNG</u>, *Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.*

High-resolution absorption spectra of carbon dioxide (CO₂) and methane (CH₄) at 1.5 μ m have been studied using the sensitive technique of cavity enhanced absorption spectroscopy (CEAS) with an ultra-high finesse cavity. Absorption spectra of CO₂ and CH₄ between 6390 \sim 6570 cm⁻¹ were recorded at room temperature with pressures of less than 5 torrs. The spectral linewidth measured is about 0.012 and 0.020 cm⁻¹ respectively for CO₂ and CH₄, which agree well with the Doppler linewidth predicted at room temperature. The transition intensity of these lines are measured to be about \sim 1x10⁻²⁶ cm⁻¹/(molecule*cm⁻²) for both CO₂ and CH₄. Analysis of the obtained spectra of CO₂ and CH₄ is in progress.