WAVE NUMBERS, STRENGTHS, WIDTHS AND SHIFTS WITH PRESSURE OF LINES OF $^{16}{\rm O_2}$ IN SYSTEMS a $^1\Delta_g-X$ $^3\Sigma_q^-$ AND b $^1\Sigma_q^+-X$ $^3\Sigma_q^-$

SWEE-LAN CHEAH, YUAN-PERN LEE, Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; J. F. OGILVIE, Centre for Experimental and Constructive Mathematics, Department of Mathematics, Simon Fraser University, 8888 University drive, Burnaby, British Columbia V5A 1S6 Canada.

Analysis of newly measured spectral data^a for wave number and intensities of transitions of $^{16}O_2$ in absorption in systems $a^{-1}\Delta_g \ \nu = 0 - X^3\Sigma_g \ \nu = 0$ and $b^{-1}\Sigma_g^+ \nu = 0$, $1, 2 - X^3\Sigma_g \ \nu = 0$ with proper statistical treatment yields band parameters for excited states, based on parameters for the ground vibrational state valid up to J = 41, that are the most precise ($\sigma = 0.021$, $0.038, 0.043, 0.50 \ \text{m}^{-1}$ respectively) in published form, and strengths of lines that are internally consistent and in satisfactory agreement with other published values.

^aS.-L. Cheah, Y.-P. Lee and J. F. Ogilvie, J. Quant. Spectrosc. Radiative Transfer, 64, 467–482 (2000)