CARS AND INFRARED STUDIES OF THE ν_1 , ν_2 AND ν_4 BANDS OF ${}^{34}S^{18}O_3$

TONY MASIELLO, JEFFREY BARBER, ENGELENE t.H. CHRYSOSTOM, JOSEPH W. NIBLER, *Department of Chemistry, Oregon State University, Corvallis, OR 97331*; ARTHUR MAKI, *15012 24th Ave. S. E. Mill Creek, WA 98012*; ALFONS WEBER, *National Science Foundation, Arlington, VA 22230 and National Institute of Standards and Technology, Gaithersburg, MD 20899*; THOMAS A. BLAKE, ROBERT L. SAMS, *Pacific Northwest National Laboratory, Richland, WA 99352*.

We are engaged in a comprehensive investigation of the spectroscopic properties of sulfur trioxide, an important participant in reactions in the upper atmosphere. The fundamental modes and several hot bands of the isotopic variants (${}^{32}S^{18}O_3$, ${}^{34}S^{16}O_3$, and ${}^{34}S^{18}O_3$) have been investigated using high resolution infrared spectroscopy and coherent anti-Stokes Raman scattering. For all isotopic variants, the Raman-active symmetric stretching mode ν_1 shows complex Q-branch patterns due to indirect Coriolis couplings, *l*-resonances, and Fermi resonances with dark ν_2 , ν_4 combination/overtone levels. Essential to modeling the interactions of these levels with ν_1 is the understanding of the fundamental vibrations that make up these levels. The analysis of the ν_2 , ν_4 infrared active fundamental vibrations of ${}^{34}S^{18}O_3$ will be presented, along with efforts to model the complex ν_1 CARS spectrum using information derived from studies of hot bands involving ν_2 and ν_4 .