LASER SPECTROSCOPIC CHARACTERIZATION OF THE GROUND $\tilde{\mathbf{X}}\ ^1\Sigma_g^+$ AND EXCITED $\tilde{\mathbf{A}}\ ^1\mathbf{B}_1$ STATES OF JET-COOLED LIOLI ("LITHIATED WATER")

<u>D. BELLERT</u>, DARIN W. WINN, and W.H. BRECKENRIDGE, *Department of Chemistry, University of Utah, Salt Lake City, Utah 84112*.

Various laser based spectroscopies, including R2PI (Resonance Two-Photon Ionization), LIF (Laser-induced Fluorescence), DF (Dispersed Fluorescence), and SEP (Stimulated Emission Pumping) have been utilized to determine several vibrational and rotational constants for the ground ($\tilde{X}^1\Sigma_g^+$) and first singlet excited state (\tilde{A}^1B_1) of $^7Li^{16}O^7Li$. From analysis of SEP spectra to $(\nu_1,\nu_2^\ell,\nu_3=0)$ vibrational states, the $^7Li^{16}O^7Li$ ground state is confirmed to be linear, with a bond length (R_0) of 1.611 ± 0.005 Å. The 1B_1 excited state is bent, with a bond angle of approximately 105° , and a bond length (R_0) of approximately 1.84 Å. These geometries are consistent with ab initio estimates, and with the idea that the bonding in both these states is essentially ionic $(Li^{+1}O^{-2}Li^{+1}$ and $Li^{+1/2}O^{-1}Li^{+1/2}$, respectively).