THE GROUND STATE ROTATIONAL SPECTRUM OF SO₂F₂.

M. ROTGER, V. BOUDON and M. LOÈTE, Laboratoire de Physique de l’Université de Bourgogne, CNRS UMR 5027, 9, Avenue Alain Savary, B.P. 47 870, F-21078 DIJON Cedex, France; L. MARGULÈS and J. DEMAINON, Laboratoire de Physique, Atomes et Molécules, CNRS UMR 8523, Université de Lille I, Bât. P5, 59655 Villeneuve d’Ascq Cedex, France; H. MÄDER, Institut für Physikalische Chemie, Universität Kiel, Olshausenstr. 40, D-24098 KIEL Germany; G. WINNEWISER and H. S. P. MÜLLER, I. Physikalisches Institut, Universität zu Köln, D-50937 KÖLN Germany.

The analysis of the ground state rotational spectrum of SO₂F₂ has been performed with the Watson’s Hamiltonian up to sextic terms but shows some limits due to the \(A \) and \(S \) reductions. Since SO₂F₂ is a quasi-spherical top, it can also be regarded as derived from an hypothetical \(XY_4 \) molecule. Thus we have developed a new tensorial formalism in the \(O(3) \supset T_{d} \supset C_{2v} \) group chain. We test it on the ground state of this molecule using the same experimental data (0–1 THz region, \(J \) up to 99). Both fits are comparable even if the formalisms are slightly different. This talk intends to establish a link between the classical approach and the tensorial formalism. In particular, our tensorial parameters at a given order of the development are related to the usual ones. Programs for spectrum simulation and fit using these methods are named \(C_{2v} \) TDS. They are freely available at the URL:

http://www.u-bourgogne.fr/LPUB/c2vTDS.html