d2-METHOXY RADICAL DISPERSED FLUORESCENCE AND SEP SPECTROSCOPY.

XIAOYONG LIU, VADIM STAKHURSKY, ERIC D. OLMON, VLADIMIR A. LOZOVSKY, TERRY A. MILLER, C.BRADLEY MOORE, *The Ohio State University, Dept. of Chemistry, 120 W. 18th Avenue, Columbus, Ohio 43210, USA.*

In the rotationally resolved LIF $\tilde{A} \leftarrow \tilde{X}$ spectrum of the jet-cooled d₂-methoxy radical (CHD₂O), combination bands of C-O (ν_3) and C-H (ν_1) stretches 1¹3¹ and 1¹3² were assigned. Analysis of vibrationally resolved Dispersed Fluorescence (DF) and rotationally resolved Stimulated Emission Pumping (SEP) spectra recorded upon excitation of these bands reinforces LIF spectral assignments and gives C-H and C-O stretch along with pseudo-Jahn-Teller active d₂-methyl rock (ν_6'', ν_6') vibrational frequencies in the \tilde{X} state. A splitting of about ~ 200 cm⁻¹ for 1₁, 3₁1₁, 3₂1₁ vibronic levels of CHD₂O is observed and may be due to the combination of vibronic degeneracy lifting and unquenched spin-orbit interaction. The DF spectra of CH₃O were recorded for excitation of $\tilde{A}^2A_1 3^n 4^1$ (n=1,2,3) combination bands containing asymmetric (ν_4) stretch. $\tilde{X}^2E_1 3_64_1$ and $\tilde{X}^2E_1 3_74_1$ rovibronic levels which lie ~ 500 cm⁻¹ and 1500 cm⁻¹, respectively, above the \tilde{X}^2 E CH₃O barrier for dissociation CH₂O + H products, exhibit splitting of ~ 120 cm⁻¹.