A tensorial formalism adapted to the case of X_2Y_4 asymmetric molecules\(^a\) with \(D_{2h}\) symmetry has been developed in the same way as in the previous works on \(XY_4\) (\(T_d\)) and \(XY_6\) (\(O_h\)) spherical tops, \(XY_5Z\) (\(C_{4s}\)) symmetric tops\(^d,e\) or \(XY_2Z\) (\(C_{2h}\)) asymmetric tops\(^f\). We have then constructed a Stark Hamiltonian using the same principle. This model allows the calculation of Stark shifts and splittings in the spectra of \(D_{2h}\) molecules. Preliminary predictions will be shown for some rovibrational bands of the C\(_2\)H\(_4\) molecule.