RESONANCE-ENHANCED MULTIPHOTON IONIZATION SPECTROSCOPY OF CH₃ and CD₃. TWO-PHOTON ABSORPTION SELECTION RULES AND ROTATIONAL LINE STRENGTHS OF THE ν_3 – AND ν_4 – ACTIVE VI-BRONIC TRANSITIONS

K. CHEN, Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC.

To explore the possibility of *K*-level resolved, 2+1 resonance-enhanced multiphoton ionization (REMPI) processes of the methyl radical, the two-photon absorption selection rules and rotational line strengths of the 3_0^1 and 4_0^1 vibronic bands of the transition $np \leftarrow \tilde{X}(n=3 \text{ or } 4)$ were reported. Stringent selection rules, which were imposed upon these two-photon transitions, are the initial K'' = 3p (p = 0, 1, 2, ...), $\Delta K = \pm 2$, $\Delta U = \pm 3$ and $\Delta N = 0, \pm 1, \pm 2$ (O, P, Q, R, and S branches). The previously assigned 2_2^2 vibronic band of the methyl radical should be studied by the REMPI with a better spectral resolution and analyzed by the newly derived two-photon absorption selection rules and rotational line strength formulas.