STIMULATED EMISSION PUMPING SPECTROSCOPY OF THE FIRST EXCITED SINGLET STATE OF GERMYLIDENE ($H_2C=Ge$)

<u>SHENG-GUI HE</u> and DENNIS J. CLOUTHIER, *Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055.*

The \tilde{A}^1A_2 states of H_2CGe and D_2CGe have been explored for the first time by $\tilde{A} - \tilde{X}$ laser-induced fluorescence (LIF) spectroscopy of the orbitally forbidden S_1 - S_0 transition and stimulated emission pumping (SEP) and wavelength resolved fluorescence studies of the allowed \tilde{B} - \tilde{A} electronic transition. Medium-resolution SEP studies gave the excited \tilde{A} state ν_2 , ν_3 , ν_4 , and ν_6 vibrational frequencies for $H_2C^{74}Ge$ and $D_2C^{74}Ge$. The 4^1 and 6^1 levels and higher combination and overtone states are strongly Coriolis coupled, which perturbs the rotational subband structure, limiting the accuracy of the determination of the vibrational frequencies. High-resolution SEP studies of the \tilde{B} - \tilde{A} 0^0_0 band have allowed us to determine the rotational constants of the \tilde{A} state of $H_2C^{74}Ge$, from which we were able to calculate an approximate r_0 structure with the CH bond length constrained to the ground state value. The zero-point level of $D_2C^{74}Ge$ is substantially perturbed, most plausibly by interaction with an excited vibrational level of the nearby triplet (\tilde{a}^3A_2) state.