THE ROTATIONAL SPECTRA OF S3 AND S4

<u>C. A. GOTTLIEB</u>, M. C. McCARTHY, S. THORWIRTH, and P. THADDEUS, *Harvard-Smithsonian Center* for Astrophysics, 60 Garden Street, Cambridge, MA 02138, U.S.A. and Division of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, U.S.A..

Following the initial detection of the pure sulfur clusters S_3 and S_4 at centimeter wavelengths by Fourier transform microwave spectroscopy^{*a*}, S_3 has subsequently been observed at millimeter wavelengths. Thirteen spectroscopic constants reproduce over 60 transitions of S_3 between 9 and 460 GHz (with $J \le 87$ and $K_a \le 7$) to within the measurement uncertainties. From these the frequencies of the astrophysically relevant lines of S_3 can be calculated to about 1 part in 10^7 up to 500 GHz, allowing deep searches in the atmosphere of Io, dense molecular cores, and circumstellar shells of late-type stars with existing millimeter- and submillimeter-wave telescopes.

^aM. C. McCarthy, S. Thorwirth, C. A. Gottlieb, and P. Thaddeus, J. Am. Chem. Soc., in press.