INFRARED SPECTRA OF CO_2 - H_2 COMPLEXES

A.R.W. McKELLAR, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.

Infrared spectra of weakly-bound CO_2 - H_2 complexes have been studied in the region of the CO_2 ν_3 asymmetric stretch, using a tunable diode laser probe and a pulsed supersonic jet expansion. For CO_2 - $paraH_2$, results were obtained for three isotopic species, $^{12}C^{16}O_2$, $^{13}C^{16}O_2$, and $^{12}C^{18}O_2$. These spectra were analyzed using an asymmetric rotor Hamiltonian, with results that resembled those obtained previously for OCS- and N_2O - $paraH_2$ [1], except that half the rotational levels were missing due to the symmetry of CO_2 and the spin statistics of the ^{16}O or ^{18}O nuclei (as in the similar case of CO_2 -He [2]). The CO_2 - $paraH_2$ complex has a T-shaped structure with an intermolecular distance of about 3.5 Å, and the CO_2 ν_3 vibration exhibits a small red shift (-0.20 cm $^{-1}$) in the complex. For CO_2 - $orthoH_2$, more complicated spectra were observed which could not be assigned, in contrast to OCS- and N_2O - H_2 where the $paraH_2$ and $orthoH_2$ spectra were similar, though distinct.

- [1] J. Tang and A.R.W. McKellar, J. Chem. Phys. 116, 646 (2002); 117, 8308 (2002).
- [2] M.J. Weida, J.M. Sperhac, D.J. Nesbitt, and J.M. Hutson, J. Chem. Phys. 101, 8351 (1994).