UNIMOLECULAR PROCESSES IN CH₂OH BELOW THE DISSOCIATION BARRIER STUDIED BY O-H STRETCH OVERTONE EXCITATION

J. WEI, B. KARPICHEV, H. REISLER, Department of Chemistry, University of Southern California, Los Angeles, CA 90089.

Infrared spectra in the fundamental, the first, and the second OH-stretch overtone transitions $(\nu_1, 2\nu_1, 3\nu_1)$ were obtained by using double resonant ionization via the $3p_z$ Rydberg state. The rotationally well-resolved spectra show that intramolecular vibrational redistribution (IVR) is restricted even in the $3\nu_1$ energy region around 10 490 cm⁻¹, which is 960 cm⁻¹ above the thermochemical threshold for dissociation to H + CH₂O.

The spectrum in the third overtone region $(4\nu_1)$ at 13 600 cm⁻¹, which is 3 950 cm⁻¹ higher than the dissociation threshold, was obtained by monitoring atomic hydrogen photofragments. The overtone spectrum is partially rotationally resolved with a line width of 1.1 cm⁻¹. The long dissociation lifetime (> 6 ps) and the similar O-H stretch anharmonicties (obtained from the Birge-Sponer plot) for CH₂OH (91 cm⁻¹) and other molecules with much higher O-H dissociation energies indicate that the examined energy region is below the barrier to direct O-H bond fission.

The lack of signal from deuterium fragments in CD₂OH excitation shows that tunneling through the barrier followed by direct O-H bond fission is the dominant pathway following $4\nu_1$ excitation. Theoretical calculations predicted that dissociation via isomerization to the methoxy radical, CH₃O, has a barrier lower by 1 000 cm⁻¹ - 2 000 cm⁻¹ than that for direct O-H bond fission, but this channel appears to be unimportant in the $4\nu_1$ region.

Ongoing work involves accessing higher energy regions that may exceed the reaction barriers. Research funded by DOE.