A COMMENT ON HÖNL-LONDON FACTORS

ANNIE HANSSON, Stockholm University, AlbaNova University Center, Department of Physics, SE-10691 Stockholm, Sweden; JAMES K. G. WATSON, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6.

The Hönl-London factors^{*a*} are the factors dependent on the rotational quantum numbers in formulas for intensities of rovibronic transitions. A table of Hönl-London factors for singlet-singlet transitions of a diatomic molecule was given by Herzberg^{*b*}, and reproduced in other books. Standard definitions of transition moments and sum rules were proposed by Whiting and Nicholls^{*c*}, but there does not seem to be a published table of the corresponding individual Hönl-London factors. Here we show that for rotational transitions between levels of definite parity the values in Herzberg's table should be multiplied by 2 for all perpendicular vibronic transitions, with an additional factor of 2 for $\Pi - \Sigma$ and $\Sigma - \Pi$ transitions. The results are consistent with the Whiting-Nicholls conventions.^{*c*}

^aH. Hönl and F. London, Z. Physik 33, 803 (1925).

^bG. Herzberg, Spectra of Diatomic Molecules, Van Nostrand (1950), p. 208.

^cE. E. Whiting and R. W. Nicholls, *Astrophys. J. Suppl. Ser.* 27, 1 (1974); E. E. Whiting, A. Schadee, J. B. Tatum, J. T. Hougen and R. W. Nicholls, *J. Mol. Spectrosc.* 80, 249 (1980).