NEW DISPERSED FLUORESCENCE SPECTRUM OF THE CBr₂ Ã-Ã TRANSITION

HUI-JU HSU, WEI-ZHONG CHANG, and <u>BOR-CHEN CHANG</u>, Department of Chemistry, National Central University, 300 Jung-Da Road, Chung-Li 32001, Taiwan.

New dispersed fluorescence spectra following the excitation of the CBr₂ $\tilde{A}^1B_1 \leftarrow \tilde{X}^1A_1 \ 2_0^{13}$ and 2_0^{14} bands at visible wavelengths in a discharge free jet expansion were acquired using an intensified charge-coupled device (ICCD) detector. The new dispersed fluorescence spectra show an improvement of the signal-to-noise ratios by a factor of roughly 10 with respect to our previous report.^a These new data extend the scan range from the maximum redshift of 2500 cm⁻¹ in our previous report^a to 6000 cm⁻¹ and reveal more details of the \tilde{X}^1A_1 state vibrational structure. Vibrational parameters including fundamental frequencies, anharmonicities, and coupling constants were determined for the CBr₂ \tilde{X}^1A_1 state. Moreover, additional vibrational structures, other than that of the singlet ground electronic state, starting at approximately 2725 cm⁻¹ were clearly observed in the new dispersed fluorescence spectra. Since these additional vibrational structures possibly belong to the background triplet state (\tilde{a}^3B_1), the singlet-triplet energy gap could be determined. Our progress on the experiments and analyses will be presented.

^aC.-L. Lee, M.-L. Liu, and B.-C. Chang, *Phys. Chem. Chem. Phys.* <u>5</u>, 3859-3863 (2003).