HIGH RESOLUTION SPECTROSCOPY OF THE $\tilde{B}^2A_1 - \tilde{X}^2A_1$ TRANSITION OF CaCH₃ and SrCH₃

<u>P. M. SHERIDAN</u>, Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1 Canada; M. J. DICK, Department of Physics, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1 Canada; J. G. WANG and P. F. BERNATH, Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1 Canada.

The $\tilde{B}^2 A_1 - \tilde{X}^2 A_1 (0_0^0)$ bands of CaCH₃ and SrCH₃ have been observed at high resolution using laser excitation spectroscopy. The molecules were synthesized in a laser ablation/supersonic expansion spectrometer by the reaction of the ablated metal atoms with a 1% mixture of $(CH_3)_4 Sn$ seeded in argon. The spectra for each molecule exhibit a symmetric top structure, with low J lines of multiple K components present. A rotational analysis is currently in progress, and a comparison of the spectroscopic and structural parameters for both molecules will be presented.