ANALYSIS OF HIGH-RESOLUTION INFRARED SPECTRA OF ¹¹BF₃

TONY MASIELLO, <u>THOMAS A. BLAKE</u>, *Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K8-88, Richland, WA 99352 (PNNL is operated for the US Department of Energy by the Battelle Memorial Institute under contract DE-AC05-76RLO 1830);* ARTHUR MAKI, 15012 24th Ave. S.E., Mill Creek WA, 98012.

We have been engaged in the measurement and analysis of high-resolution infrared spectra of enriched samples of ${}^{11}BF_3$. The Bruker IFS 120HR Fourier transform spectrometer at the Pacific Northwest National Laboratory (PNNL) facilities has been used to obtain measurements that range in resolution from 0.0015 to 0.0035 cm⁻¹ with pathlengths of up to 32 m. The fundamental infrared active transitions and many hot bands, overtones and combination bands have been investigated.

A multiple reflection White cell was used to identify a number of weak states not directly visible from the ground state. One of these states, $3\nu_4$, visible as the hot band $3\nu_4 - 2\nu_4$, is involved in a strong Fermi resonance with the ν_3 fundamental and was directly measured for the first time. A rotational perturbation was found to couple the $2\nu_2$ and $\nu_1 + \nu_4$ vibrations through a $\Delta K = 2$, $\Delta l = -1$ interaction constant. The infrared inactive ν_1 symmetric-stretching mode was characterized by two independent routes, one using the transitions $(110^00^0) - (000^00^0)$, $A''_2 - A'_1$ and $(110^00^0) - (100^00^0)$, $A''_2 - A'_1$, and the other using the transitions $(001^10^0) - (000^00^0)$, $E' - A'_1$ and $(001^10^0) - (100^00^0)$, $E' - A'_1$. Since the rovibrational parameters for the ν_1 state are not equilibrium parameters (not parameters from the bottom of the potential well), they are slightly different for ¹¹BF₃ and ¹⁰BF₃. Rovibrational constants will be presented for a number of combination/overtone states as well as the Hamiltonian used to derive them.