PERTURBATIONS OF THE FINE AND HYPERFINE STRUCTURE IN THE PURE ROTATIONAL SPECTRUM OF VCl ($X^5\Delta_r$)

<u>D. T. HALFEN</u> and L. M. ZIURYS, Department of Chemistry, Department of Astronomy, and Steward Observatory, University of Arizona, Tucson, AZ, 85721.

The pure rotational spectrum of the VCl $(X^5 \Delta_r)$ radical has been measured using millimeter/sub-mm-wave direct absorption methods. This work is the first pure rotational study of this molecule. Vanadium chloride was produced in a plasma created by an AC discharge of gas-phase VCl₄ and argon. Ten rotational transitions each of the ³⁵Cl and ³⁷Cl isotopomers have been measured for all five spinorbit components, confirming the ⁵ Δ_r ground state. Lambda doubling is observed in four of the five Ω ladders, including the $\Omega = 0$ ladder, which had not been observed previously. Each fine structure component was found to exhibit hyperfine splittings due to the ⁵¹V nuclear spin (I = 7/2). The fine structure pattern of the spin-orbit ladders suggests that the ground state is perturbed with the $\Omega = 1$ ladder significantly shifted with respect to the overall pattern. In addition, the hyperfine structure of the $\Omega = 1$ and 2 ladders becomes highly irregular for certain rotational transitions. Rotational, spin-orbit, spin-spin, lambda-doubling, and hyperfine parameters have been determined from the spectra, and the results will be discussed.