LABORATORY DETECTION AND PURE ROTATIONAL SPECTRUM OF VCl^+ BY VELOCITY MODULATION SPECTROSCOPY

<u>D. T. HALFEN</u> and L. M. ZIURYS, Department of Chemistry, Department of Astronomy, and Steward Observatory, University of Arizona, Tucson, AZ, 85721.

The pure rotational spectrum of VCl⁺ has been measured using millimeter-wave direct absorption techniques incorporating velocity modulation for ion selection. This work is the first laboratory observation of this species. VCl⁺ was created in an AC glow discharge of gas-phase VCl₄ and argon. Rotational transitions of the ³⁵Cl and ³⁷Cl isotopomers have been measured originating in four fine structure components of this ion, each which exhibit hyperfine structure arising from the ⁵¹V nuclear spin (I = 7/2). The current data suggest a ⁴ Φ_r or ⁴ Δ_r ground state. Additional spectroscopic measurements are in progress and the latest results will be presented.