INFRARED-ACTIVE VIBRON BANDS ASSOCIATED WITH RARE GAS SUBSTITUTIONAL IMPURITIES IN SOLID HYDROGEN

PAUL L. RASTON, and DAVID T. ANDERSON, Department of Chemistry, University of Wyoming, Laramie, WY 82071-3838.

Solid para-hydrogen (pH₂) crystals doped with part per million concentrations of rare gas (Rg) atoms display a new zero phonon absorption feature which correlates with the pH₂ pure vibrational Q₁(0) transition. This Rg induced Q₁(0) absorption has been studied at high resolution for Ne, Ar, Kr, and Xe doped pH₂ crystals. The more polarizable the Rg atom, the more intense and red shifted is the induced pH₂ Q₁(0) feature. The frequency and lineshape of the transition provides information on how localized the vibron is around the Rg impurity. Comparison of the experimental data with a recent theoretical model is very favourable.^{*a*} In addition, the Rg atom perturbs the S₁(0) pH₂ transition resulting in peaks that show fine structure which is interpreted as a lifting in the m_J degeneracy of this J=2 upper state. Preliminary studies of Xe atom doped ortho-deuterium will also be presented and discussed.

^aR. J. Hinde, J. Chem. Phys. 119, 6 (2003).