SLIT DISCHARGE SPECTROSCOPY OF JET-COOLED CYCLOPROPYL RADICAL IN THE ANTISYMMETRIC CH₂ STRETCH (ν_7) MANIFOLD: STRUCTURES, TUNNELING BARRIER AND INTRAMOLECULAR DYNAMICS

FENG DONG, SCOTT DAVIS, and DAVID J. NESBITT, JILA, University of Colorado, Boulder, CO 80309.

High-resolution infrared spectra of jet-cooled cyclopropyl radical are reported for the first time, specifically sampling the in-phase antisymmetric CH₂ stretch (ν_7) vibration. In addition to yielding first precise gas phase structural information for this radical, the spectra reveal doubling due to quantum tunneling of the lone α -CH with respect to the CCC plane, lift the degeneracy and generating lower (+) and upper (-) tunneling states. The bands clearly reveal intensity alternation (6:10 for even:odd Ka+Kc levels in the lower \leftarrow lower and 10:6 in the upper \leftarrow upper) due to H atom nuclear spin statistics, confirming that the tunneling transition state for cyclopropyl radical is of C_{2v} symmetry. However, in addition to the two predicted vibrational bands (i.e. lower \leftarrow lower and upper \leftarrow upper), a third band is observed due to IVR mixing of the upper tunneling component (ν_7) with a nearly isoenergetic dark state. From fractional populations in the ground and excited state, the tunneling splittings for cyclopropyl radical in the ground and excited (ν_7) state are estimated to be 3.2 ± 0.3 cm⁻¹ and 4.9 ± 0.3 cm⁻¹, respectively. This indicates that stereoracemization of the α -CH radical center is a very fast process (k= $2.0x10^{11}$ s⁻¹), and that the barrier decreases upon vibrational excitation of the CH₂ in-phase antisymmetric stretch. The barrier height for α -CH inversion through the cyclopropyl plane is also extracted from the analysis of the tunneling dynamics with simple 1D potential energy surface.