HIGH-RESOLUTION INFRARED SPECTROSCOPY OF JET-COOLED VINYL RADICAL: SYMMETRIC $\rm CH_2$ STRETCHING VIBRATIONS

FENG DONG, and DAVID J. NESBITT, JILA, University of Colorado, Boulder, CO 80309.

Vinyl radical, C_2H_3 , is a transient but fundamental hydrocarbon species which plays important roles in a number of combustion processes. Previous high resolution spectroscopic studies of this species have been very limited; only the CH₂ wagging mode in the electronic ground state has been ^{*a*} studied with IR diode laser absorption methods. Guided by both recent time-resolved FTIR emission ^{*b*} and high level density functional predictions, we have recently used the slit jet discharge IR laser spectrometer to observe and assign high-resolution infrared spectra of jet-cooled vinyl radical in the symmetric CH₂ stretch region. In addition to structural information, the tunneling dynamics due to in-plane rocking of the α -C-H will be discussed.

^aH. Kanamori, Y. Endo, and E. Hirota, J. Chem. Phys. 92 (1), 197 (1990).

^bL. Letendre, D. K. Liu, C. D. Pibel, J. B. Halpern, and H. L. Dai, J. Chem. Phys. 112 (21), 9209 (2000).