INFRARED PHOTOCHEMICAL STUDIES OF $\mathrm{W}(\mathrm{CO})_6$ IN CRYOGENIC SOLID PARAHYDROGEN

SUBRAHMANYAM V. GARIMELLA, and DAVID T. ANDERSON, Department of Chemistry, University of Wyoming, Laramie, WY 82071-3838.

We report our results and analysis of the 355 nm photodissociation of $W(CO)_6$ in cryogenic solid parahydrogen (pH₂) which is followed via high resolution infrared absorption spectroscopy. The photochemistry of $W(CO)_6$ has been extensively studied in low temperature glasses and matrices, in the liquid phase, and in the gas phase. In the current studies the $W(CO)_6$ doped pH₂ crystal is exposed to the 355 nm output of a 10 Hz Nd:YAG laser for short periods of time. Two photoproducts have been identified. In one case a single CO ligand is eliminated and replaced with a H₂ molecule resulting in a non-classical molecular hydrogen compound $W(CO)_5(H_2)$ with absorptions at approximately 1950, 1980 and 2103 cm⁻¹, which are attributed to A₁, E, A₁ carbonyl stretching vibrations^{*a*} of the C₄*v* photoproduct. The other photoproduct is identified as *cis*- $W(CO)_4(H_2)_2$ with carbonyl stretching vibrations at 1944 and 2076 cm⁻¹, attributed to the a₁ and b₂ modes of the C₂*v* fragment.^{*b*} In addition, infrared absorptions of the photochemical mechanism is underway and will be presented.

^aL. E. Orgel, Inorg. Chem. 1, 25 (1962).

^bS. E. J. Goff, T. F. Nolan, M. W. George, and M. Poliakoff, Organometallics 17, 2730 (1998).