LASER SPECTROSCOPY OF THE $\tilde{X}^2 \Pi_g$, $\tilde{A}^2 \Pi_u$ AND $\tilde{B}^2 \Sigma_u^+$ STATES OF BS₂: RENNER-TELLER, SPIN-ORBIT and *K*-RESONANCE EFFECTS

DENNIS J. CLOUTHIER and SHENG-GUI HE, Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055; ALLAN G. ADAM and <u>DENNIS W. TOKARYK</u>, Departments of Chemistry and Physics, and the Centre for Laser, Atomic, and Molecular Sciences, University of New Brunswick, Fredericton, NB, Canada, E3B 6E2.

The lowest-lying vibronic levels of the \tilde{X} , \tilde{A} , and \tilde{B} states of BS₂ have been investigated at high resolution using a combination of room-temperature absorption and supersonic jet data. In both cases, the BS₂ radical was prepared in an electric discharge using a precursor gas mixture of BCl₃, CS₂, and either helium or argon. Extensive absorption spectra were obtained for the 0_0^0 and 2_1^1 bands of the $\tilde{A}^2 \Pi_u - \tilde{X}^2 \Pi_g$ electronic transition in the visible using a mutipass discharge cell and a scanning ring dye laser. The $\tilde{A} - \tilde{X}$ and $\tilde{B} - \tilde{X} 2_1^1$ bands of jet-cooled BS₂ were also studied with laser-induced fluorescence techniques. By fitting the 0_0^0 bands of both electronic transitions simultaneously, we were able to precisely determine the spin-orbit splittings in both the \tilde{A} and \tilde{X} states. The 2_1^1 bands were fitted in a merged analysis in order to determine the relative separations of the vibronic components of the ground and first excited state bending levels as accurately as possible. Due to a large spin-orbit splitting and small Renner-Teller interaction, the \tilde{A} state bending level shows small but definite *K*-resonance effects, which were fitted using a full matrix for the four components of $v_2 = 1$. The resulting parameters were used along with previously published data to refine the Renner-Teller analyses in both the $\tilde{A}^2 \Pi_u$ and $\tilde{X}^2 \Pi_g$ electronic states.