INFRARED DIODE LASER SPECTROSCOPY OF JET-COOLED $\mathrm{Ni}(\mathrm{CO})_3(^{13}\mathrm{CO})$ AND NiCO

<u>ALONZO MARTINEZ</u> AND MICHAEL D. MORSE, *Department of Chemistry, University of Utah, Salt Lake City, UT 84112.*

The two major isotopic species (58 Ni and 60 Ni) of Ni(CO)₃(13 CO) and NiCO have been investigated with a recently constructed infrared spectrometer. These molecules were observed by implementing a slit jet pulsed nozzle coupled to a modulated electrical discharge and a lock-in detection system. Typical nozzle pulses were approximately 2ms in duration, during which time the electrical discharge was modulated at a frequency of 15 kHz. Modulation of the electrical discharge allowed the use of a lock-in detector to improve the signal to noise ratio. A lead salt diode laser beam was multipassed across the output of the slit jet for 15 passes using a Perry cell, and the transmitted IR intensity was monitored. Analysis of the resulting spectra for the 13 CO and CO stretching modes in Ni(CO)₃(13 CO) and NiCO respectively, lead to the following constants (10 errors limits in parentheses):

	⁵⁸ Ni(CO) ₃ (¹³ CO)	⁶⁰ Ni(CO) ₃ (¹³ CO)	⁵⁸ NiCO	⁶⁰ NiCO
$\nu_0 \; ({\rm cm}^{-1})$	2022.075753(95)	2021.936884(181)	2010.692843(605)	2010.645425(529)
$B'' (cm^{-1})$	0.034736(2)	0.033763(4)	0.151094(8)	0.149598(7)
B' (cm ⁻¹)	0.034688(2)	0.033709(3)	0.150244(9)	0.148741(5)