NO₃ STATES ACCESSED BY PHOTODETACHMENT AND DARK-STATE SPECTROSCOPY: WHAT DO WE KNOW?

JOHN F. STANTON, MITCHIO OKUMURA, Institute for Theoretical Chemistry, Department of Chemistry, University of Texas at Austin, Austin, TX 78712; Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena CA 91125.

A good argument can be made that the atmospherically relevant NO₃ radical is the most complicated tetraatomic molecule. Five electronic states (the ground $\tilde{X}^2 A'_2$ state, and the two degenerate $\tilde{A}^2 E''$ and $\tilde{B}^2 E'$ states) lie within 2 eV, and are coupled by several strong interactions. Amongst these is a strong linear and quadratic Jahn-Teller effect in the $\tilde{A}^2 E''$ state, and a profound pseudo-Jahn-Teller interaction which couples the $\tilde{X}^2 A'_2$ ground state with the second excited state. The latter is almost strong enough to break the D_{3h} equilibrium symmetry of the ground state, and severely perturbs vibrational levels associated with the two in-plane modes of e' symmetry. This talk will report *ab initio* calculations based on the equation-of-motion coupled cluster model, its application to parametrize various vibronic model Hamiltonians, and simulations of the photodetachment spectrum of NO₃⁻ as well as the recent experiments of Okumura and coworkers in which the (dipole forbidden) $\tilde{A}^2 E''$ state is accessed by direct absorption from the ground state.