AB INITIO CALCULATION OF THE ELECTRONIC TRANSITIONS OF SAMARIUM MONOXIDE

<u>TIANXIAO YANG</u> AND RUSSELL M. PITZER, Department of Chemistry, The Ohio State University, 100 W.18th Avenue, Columbus, OH, 43210.

Using relativistic effective core potentials, spin-orbit configuration interaction (SOCI) calculations have been performed to compute the electronic transitions of SmO and SmO⁺. The ordering and positions of the low-lying states of SmO are shown to be in very good agreement with the experimental measurements^{*a*,*b*} and those calculated from ligand field theory.^{*c*} The SOCI calculations confirmed that the lowest superconfiguration of SmO is Sm²⁺(4f⁵6s)O²⁻. The ground electronic state of SmO is $X 0^-$. The upper state configuration is Sm²⁺(4f⁵5p π)O²⁻. The electronic transitions of SmO⁺ will also be discussed.

^aC. Linton, B. J. Guo, R. S. Rana and J. A. Gray J. Mol. Spectrosc. <u>126</u>(370),1987.

^bB. J. Guo and C. Linton J. Mol. Spectrosc. <u>147</u>(120),1991.

^cP. Carette and A. Hocquet J. Mol. Spectrosc. <u>131</u>(301),1988.