THE INVERSION SPLITTING OF ¹⁵NH₂D AND ¹⁵ND₂H AS OBTAINED FROM THEIR FIR SPECTRA

M. ELKEURTI, Laboratoire d'Etudes Physico Chimiques, 20000 Saïda, Algérie; L. H. COUDERT, J. OR-PHAL, LISA, CNRS/Universités Paris 12 et 7, 61 Avenue du Général de Gaulle, 94010 Créteil, France; C. E. FELLOWS, Laboratório de Espectroscopia e Laser, Universidade Federal Fluminense, Campus da Boa Viagem, Niterói, RJ, 24210-340, Brazil; AND S. TOUMI, Institut d'Electronique, Université Mokhtar Badji, 23000 Annaba, Algérie.

The far infrared absorption spectra of the partially deuterated species $^{15}NH_2D$ and $^{15}ND_2H$ have been recorded in the 20 to 105 cm⁻¹ region using a Brucker IFS 120 Fourier transform spectrometer. A 25 cm long absorption cell with teflon windows was filled with different mixtures of $^{15}NH_3$ and $^{15}ND_3$ at total pressures ranging from 0.8 to 2 mbar. Several spectra with different $^{15}NH_2D$ to $^{15}ND_2H$ ratio were thus recorded. For all spectra the maximum path length was used resulting in a 2 $\times 10^{-3}$ cm⁻¹ resolution.

Prior to the line assignment, rotational constants for ¹⁵NH₂D and ¹⁵ND₂H where calculated from those of ¹⁴NH₂D and ¹⁴ND₂H. The IAM-type theoretical approach developed by Cohen and Pickett,^{*a*} which accounts for the large amplitude inversion motion and its coupling with the overall rotation, was afterwards used to obtain rovibrational energies and predicted spectra. In the case of ¹⁵NH₂D, observed line positions for low-*J* lines were sometimes within 0.050 cm⁻¹ from their predicted values.

The line position analyzes are still in progress. For both species, they are carried out with the help of the IAM-type theoretical approach.^{*a*} For ¹⁵NH₂D more than 300 *a*- and *c*-type lines have already been assigned and the observed wavenumbers are reproduced with an RMS deviation of 0.4×10^{-3} cm⁻¹. This will be discussed in the paper and the values obtained for the spectroscopic constants will be reported and compared to those obtained by Fusina *et al.*^{*b*} for the ¹⁴N-species. The decrease of the tunneling inversion splitting which goes from 0.406 cm⁻¹ in ¹⁴NH₂D^{*b*} to 0.383 cm⁻¹ in ¹⁵NH₂D will also be discussed.

^aE. A. Cohen and H. M. Pickett, J. Molec. Spectrosc. 93, 83 (1982).

^bL. Fusina, G. Di Lonardo, J. W. C. Johns and L. Halonen, J. Molec. Spectrosc. 127, 240 (1988).