The rotational spectra of three very weakly bound complexes, He_1-$\text{C}_5\text{H}_5\text{N}$, He_2-$\text{C}_5\text{H}_5\text{N}$, and H_2-$\text{C}_5\text{H}_5\text{N}$, have been studied using a pulsed molecular beam microwave spectroscopic method. Analysis of the rotational and ^{14}N nuclear quadrupole coupling constants of these complexes shows that all three complexes possess the perpendicular geometric configuration. In this configuration, in the dimer, He and H$_2$ bind above the aromatic plan of C$_5$H$_5$N and are displaced by less than ten degrees away from the ε-axis of the pyridine monomer, toward the nitrogen atom. In the trimer, the second helium atom preferentially binds below the aromatic plan of C$_5$H$_5$N, opposite of the first helium atom. An MP2 $ab\ initio$ interaction potential between He and C$_5$H$_5$N has been generated and the theoretical results are consistent with those from the experiment. The spectra, molecular structures, quadrupole coupling parameters, and interaction potentials will be discussed.

Support by NSERC and an Alberta Ingenuity Postdoctoral Fellowship to CT are gratefully acknowledged.