MICROWAVE SPECTRA AND STRUCTURES OF OC-AuI AND 15N$_2$-CuF

NICHOLAS R. WALKER, SIMON G. FRANCIS, JOSHUA J. ROWLANDS and ANTHONY C. LEGON,
School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.

A Fourier Transform microwave spectrometer coupled to a laser ablation source has been used to obtain the pure rotational spectra of OC-AuI and 15N$_2$-CuF. Both molecules are generated via the ablation of a metal rod in the presence of a halogen precursor and are stabilized by supersonic expansion. Both spectra are consistent with linear structures. The rotational constants (B, D$_J$) of OC-AuI have been measured to a high degree of precision permitting a determination of the molecular structure. The nuclear quadrupole coupling constants of the gold and iodine atoms are consistent with trends identified during studies of other OCMX species (M=Cu,Ag,Au; X=F,Cl,Br,I). An interim assignment of the spectrum of 15N$_2$-CuF is made on the basis of lines from a single isotopomer. The nuclear quadrupole coupling constant of the copper atom in 15N$_2$-CuF is of comparable magnitude to the value obtained in studies of OC-63CuF. Lines in the pure rotational spectrum of 14N$_2$-CuF are also presented.