ZEKE SPECTROSCOPY AND ELECTRONIC STATES OF BIS(BENZENE) TITANIUM AND VANADIUM SAND-WICH COMPLEXES

<u>BRAD SOHNLEIN</u>, YUXIU LEI, and DONG-SHENG YANG, *Department of Chemistry, University of Kentucky, Lexington, KY* 40506-0055.

Ti- and V-(C₆H₆)₂ sandwich complexes seeded in helium supersonic beams have been studied by pulsed field ionization zero electron kinetic energy photoelectron spectroscopy and theoretical calculations. The electronic states of the neutral and ionic complexes have been determined by comparison of experimental and simulated spectra. The ground electronic states of the neutral Ti- and V-(C₆H₆)₂ complexes are determined to be ¹A_{1g} and ²A_{1g}, respectively. In these states, the sandwich complexes have η^6 -binding between the metal and each benzene ring and are in an eclipsed D_{6h} configuration. Ionization of these neutral states causes the benzene rings to pucker slightly and leads to Jahn-Teller distorted D_{2h} sandwich ions. The Ti⁺ and V⁺-(C₆H₆)₂ ions are in the ²B_{3g} and ³B_{3g} electronic states. The ionization energies of Ti- and V-(C₆H₆)₂ are measured to be 5.731(3) and 5.784(5) eV, and the symmetric metal-benzene stretching frequencies in these corresponding ions are 228 and 231 cm⁻¹.