ROVIBRATIONAL CHARACTERIZATION OF X² Σ^+ ¹¹BH⁺ BY THE EXTRAPOLATION OF PHOTOSELECTED HIGH-RYDBERG SERIES IN ¹¹BH

C. RICARDO VITERI and ANDREW T. GILKISON^a, Department of Chemistry, Purdue University, West Lafayette, IN 47907; <u>SCOTT J. RIXON</u> and EDWARD R. GRANT, Department of Chemistry, University of British Columbia, 6174 University Boulevard, Vancouver, BC, Canada V6T 1Z3.

Optical-optical triple resonance spectroscopy of ¹¹BH isolates high-Rydberg states that form series converging to rotational state specific ionization potentials in the vibrational levels of ¹¹BH⁺ from $v^+ = 0$ through 4. Limits defined by a comprehensive fit of these series to state-detailed thresholds yield rovibrational constants describing the X²Σ⁺ state of ¹¹BH⁺. The data provide a first determination of the vibration-rotation interaction parameter $\alpha_e = 0.4821 \text{ cm}^{-1}$ and a more accurate estimate of $\omega_e = 2526.58 \text{ cm}^{-1}$ together with the higher-order anharmonic terms $\omega_e x_e = 61.98 \text{ cm}^{-1}$ and $\omega_e y_e = -1.989 \text{ cm}^{-1}$. The deperturbation and global fit of series to state-detailed limits also yields a precise value of the adiabatic ionization potential of ¹¹BH of 79120.3(1) cm⁻¹, or 9.81033(1) eV. High precision is afforded here by the use of graphical analysis techniques, narrow bandwidth laser systems, and an analysis of newly observed, high-principal quantum number Rydberg states that conform well with a Hund's case (d) electron-core coupling limit.

^aPresent address: Schering-Plough, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530