GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12CH$_4$ LINES IN THE 900–4800 CM$^{-1}$ REGION

A. NIKITIN, Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 634055 Tomsk, Russia; V. BOUDON, J.-P. CHAMPION, LPUB – CNRS UMR 5027, 9 Av. A. Savary, BP 47870, F-21078 Dijon Cedex, France; S. ALBERT, S. BAUERECKER, M. QUACK, Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland; L. R. BROWN, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA.

A new global analysis of methane lines in the 900–4800 cm$^{-1}$ region has been performed thanks to new experimental data for both line positions and intensities. This implies three of the 12CH$_4$ polyads, namely the dyad (940–1850 cm$^{-1}$, 2 vibrational levels, 2 sublevels), the pentad (2150–3350 cm$^{-1}$, 5 vibrational levels, 9 sublevels) and the octad (3550–4800 cm$^{-1}$, 8 vibrational levels, 24 sublevels) and some of the associated hot bands. New FTIR spectra of the pentad and octad regions have been recorded with a very high resolution (better than 0.001 cm$^{-1}$ instrumental bandwidth, unapodized) at 78 K using the Bruker IFS 125 HR Zürich prototype spectrometera. New intensity measurements were performed in the whole region at the Kitt Peak National Observatory. We also used previously recorded high-resolution Raman spectrab. The effective Hamiltonian was expanded up to order 6 for the ground state, 6 for the dyad, 5 for the pentad and 5 for the octad. We obtain global root mean square deviations d_{RMS} for line positions $= 1.4 \times 10^{-4}$ cm$^{-1}$ for the dyad, 6.0×10^{-4} cm$^{-1}$ for the pentad and 3.3×10^{-3} cm$^{-1}$ for the octad. This analysis represents a large improvement over the previous onec with $d_{RMS} = 0.041$ cm$^{-1}$ for the octad system.