ELECTRONIC SPECTROSCOPY OF THE $A^1A''-X^1A'$ SYSTEM OF CHBr AND CDBr

<u>M. DESELNICU</u>, C. TAO, C. MUKARAKATE AND S. A. REID, *Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881*.

We report a comprehensive new study of the electronic spectroscopy of the $A^1 A'' \cdot X^1 A'$ system of CHBr and CDBr in the region 450-750 nm. For each isotopomer, more than 30 cold bands in the progressions 2_0^n , $2_0^n 3_0^m$ (*m*=1-3), $1_0^1 2_0^n$, and $1_0^1 2_0^n 3_0^m$ (*m*=1-2) were observed, in addition to a number of hot bands. The spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotationally analyzed to yield precise values for the band origins and rotational constants. The derived $A^1 A''$ state vibrational intervals are combined in Dixon plots with the results of Sears, Muckerman, and co-workers^{*a*} to derive barriers to linearity for the 2^n , $2^n 3^1$, and $2^n 3^2$ progressions. The $A^1 A''$ C-H (C-D) stretching frequency was determined for the first time, and is in excellent agreement with the predictions of *ab initio* electronic structure theory.^{*b*} The observed ν_3 dependence of the CH⁷⁹Br-CH⁸¹Br isotope splitting in the $A^1 A''$ state is also in excellent agreement with theory.

^aH.-G. Yu et al., J. Chem. Phys. 115, 5433 (2001).

^bH.-G. Yu et al., J. Chem. Phys. 116, 1435 (2002).