ELECTRONIC SPECTROSCOPY OF THE A¹ A"-X¹ A' SYSTEM OF CHCI AND CDCI

C. TAO, M. DESELNICU, C. MUKARAKATE AND S. A. REID, Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881.

We report a comprehensive new study of the electronic spectroscopy of the $A^1A''-X^1A'$ system of $CH^{35}Cl$, $CH^{37}Cl$, $CD^{35}Cl$ and $CD^{37}Cl$ in the region 450-750 nm. For each isotopomer, cold bands in the progressions 2_0^n , $2_0^n 3_0^m$ (m=1-2), $1_0^1 2_0^n$, and $1_0^1 2_0^n 3_0^m$ (m=1-2) were observed. The spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotationally analyzed to yield precise values for the band origins and rotational constants. The derived A^1A'' state vibrational intervals are combined in Dixon plots with previous experimental results a,b,c,d to derive barriers to linearity for the 2^n progression. The A^1A'' C-H (C-D) stretching frequency was determined for the first time, and the observed ν_2 and ν_3 dependence of the $CH(D)^{35}Cl-CH(D)^{37}Cl$ isotope splitting in the A^1A'' state is investigated.

^aA.-J. Merer and D. N. Travis, Can. J. Phys. 44, 525 (1966).

^bB.-C. Chang and T. J. Sears, J. Mol. Spectrosc. 173, 391 (1995).

^cB.-C. Chang and T. J. Sears, J. Chem. Phys. 102, 6347 (1995).

^dA. Lin, et al., J. Mol. Spectrosc. 214, 216 (2002).