SINGLE VIBRONIC LEVEL EMISSION SPECTROSCOPY OF CHCI AND CDCI: VIBRATIONAL STRUCTURE OF THE X^1A' AND a^3A'' STATES

C. MUKARAKATE, C. TAO, AND S. A. REID, Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881.

We report on single vibronic level (SVL) emission spectra from bands in the progressions 2_0^n , $2_0^n 3_0^m$, 1_{020}^n , and $1_{020}^1 3_0^1$ in the $A^1 A'' - X^1 A'$ system of CH³⁵Cl, CH³⁷Cl, CD³⁵Cl and CD³⁷Cl. As in previous studies of CHF/CDF and CHBr/CDBr, the carbenes were generated using a pulsed discharge source, and SVL emission spectra obtained using a 0.3 m spectrograph in combination with a gated, intensified CCD detector. These spectra reveal rich new detail regarding the vibrational structure of the $X^1 A'$ and $a^3 A''$ states, and spin-orbit induced mixing between them, up to 9000 cm⁻¹ above the vibrationless level of the $X^1 A'$ state. For CHCl, we observe around three times the number of $X^1 A'$ levels previously reported,^{*a*}, and a number of new $a^3 A''$ state levels. The results of Dunham expansion fits to the vibrational term energies, and comparisons with previous experimental and recent high quality theoretical studies^{*b*,*c*} will be reported. Overall, the derived vibrational parameters of the $X^1 A'$ and $a^3 A''$ states are in excellent agreement with *ab initio* predictions, including our own DFT calculations.

^aC.-S. Lin et al., J. Chem. Phys. 121, 4164 (2004).

^bG. Tarczay et al., Phys. Chem. Chem. Phys. 7, 2881 (2005).

^cH.-G. Yu et al., Mol. Phys. 104, 47 (2006).