BROAD SHAPE RESONANCE EFFECTS IN CaF RYDBERG STATES

SERHAN N. ALTUNATA, <u>STEPHEN L. COY</u>, AND ROBERT W. FIELD, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139.

Results of *ab-initio* R-matrix calculations ^{*a*} indicate the presence of a broad shape resonance in electron- CaF^+ scattering for the ${}^{2}\Sigma^+$ electronic symmetry near the ionization threshold. The properties of this shape resonance are analyzed using the adiabatic partial-wave expansion of the scattered electron wavefunction introduced by Le Dourneuf et. al. ^{*b*} The qualitative aspects of the shape resonance are explained by an adiabatic approximation on the electronic motion. Mulliken's rule for the structure of Rydberg state wavefunctions ^{*c*} specifies that, except for an $(n^*)^{-3/2}$ scale factor, every excited state wavefunction within a Rydberg series is build on an innermost lobe that remains invariant in shape and nodal position as a function of excitation energy. Mulliken's rule implies a weak energy dependence of the quantum defects for an unperturbed molecular Rydberg series, which is given by the Rydberg-Ritz formula.

This zero-prder picture is violated by a single ${}^{2}\Sigma^{+}$ CaF Rydberg series at all Rydberg state energies ($n^{*} \ge 5$, increasingly with n^{*}) below the ionization threshold, under the broad width of the shape resonance. Such a violation is diagnostic of a *global* "scarring" of the Rydberg spectrum, which is distinct from more familiar *local* level perturbations.

^aAltunata et. al. J. Chem. Phys. 123, 084319(2005).

^bLe Dourneuf et. al. J. Phys. B, 15, L685(1982)

^cR.S. Mulliken, J. Am. Chem. Soc. 86, 3183(1964).