THE $S_1(n, \pi^*)$ STATE OF 2-CYCLOHEXEN-1-ONE: CAVITY RINGDOWN ABSORPTION SPECTRUM AND DFT CALCULATIONS

E. J. GILLES, L. K. AUSMAN, E. A. BROWN, <u>S. DRUCKER</u>, Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, WI 54702; S. LEE, J. CHOO, Department of Chemistry, Hanyang University, Ansan 425-791, Korea; M. RISHARD, J. LAANE, Department of Chemistry, Texas A & M University, College Station, TX 77843.

The cavity ringdown absorption spectra of 2-cyclohexen-1-one (2CHO) and a deuterated derivative were recorded near 380 nm in a room-temperature gas cell. The weak band system ($\epsilon \approx 20 \ M^{-1} \ cm^{-1}$) in this region is due to the $S_1(n, \pi^*) \leftarrow S_0$ electronic transition. The origin band was observed at 26,081(1) cm⁻¹ for the undeuterated molecule and at 26,076(1) cm⁻¹ for 2CHO-2,6,6- d_3 . For the d_0 isotopomer, about 40 vibronic transitions have been assigned in a region from $-300 \ to +700 \ cm^{-1}$ relative to the origin band. Nearly every corresponding assignment was made for the d_3 species. Several fundamental vibrational frequencies in the S_1 state, as well as the five lowest ring-puckering (or inversion) energy levels in the S_1 state, have been determined for the d_0/d_3 isotopomers. The spectroscopic results are summarized below (frequencies in cm⁻¹, uncertainties $\pm 0.5 \ cm^{-1}$), along with results of a DFT calculation of the d_0 isotopomer:

Vibrational frequencies of 2CHO in its S_1 state

mode	$\operatorname{description}$	d_0	$d_0({ m DFT calc})$	d_3	v_{39}'	d_0	d_3
$ u_{39}'$	inversion	122.1	120.8	114.4	1	122.1	114.4
$ u_{38}'$	ring bending	251.9	249.9	236.9	2	243.8	228.6
$ u_{37}'$	C = C twisting	303.3	298.4	294.6	3	364.5	341.8
$ u_{36}'$	carbonyl deformation	343.9	341.9	332.0	4	485.3	455.3
					5	603.6	565.7

The inversion-level spacings in the S_1 state indicate a barrier to planarity that is significantly higher than the 2000-cm⁻¹ barrier height of the ground electronic state. Work is in progress to fit an S_1 inversion potential to the spectroscopic data.